GRE Physics: Comprehensive Notes

1 Classical Mechanics

1.1 Dynamics

- $\mathbf{F}_{\text{tot}} = m\mathbf{a}; F_{1-2} = F_{2-1} \rightarrow \text{for an object not to accelerate in direction } x$, all forces on x sum up to zero
- think always of *limiting cases* (*e.g.* if I know $F = 0$ at $\theta = 0$ and $F = 1$ at $\theta = \frac{\pi}{2}$ probably $\propto \sin(\theta)$)
- $F_s \leq \mu F_N$ (static friction) \rightarrow if body just moves the friction force is max and equals kinetic friction $(F_s^{\max} = F_d)$
- if two objects are:
	- not distinct, they move with the same $a(e,q)$ one on top of the other, even if attached by a massless spring in between there would be no tension)
	- independent, then consider the forces separately (if friction is involved this is always the case)
- projectile motion: $x(t) = V_{0,x}t + x_0$ (no force acting so $V_{0,x} = \text{cost}$)
	- $-y(t) = y_0 + V_{0,y}t \frac{g}{2}t^2$ (since $a = -g$)
	- Recall! from kinematics $v_f^2 v_i^2 = 2a\Delta s$ where $\Delta s = s_f s_i$
- uniform circular motion $\rightarrow a = \frac{v^2}{R}$ $\frac{\omega^2}{R}$; $v = \omega r = \frac{2\pi R}{T}$; $T = \frac{2\pi}{\omega}$; $f = \frac{\omega}{2\pi} = \frac{1}{T}$ (don't forget this! check units)
	- $-F = \frac{mv^2}{R} \rightarrow$ valid also if *not* uniform but only when all forces are *Radial*!
		- (*e.g.* pendulum at lowest point $\mathbf{F}_{\text{tot}} = T mg = \frac{mv^2}{R}$)
	- if body does not have constant tangential $v \rightarrow a$ must have also a tangential component
- To compute terminal velocity $F_g = F_d$ (where F_d is the drag force $\propto v$)
- $\Delta E = \Delta K + \Delta U = \Delta W_{\text{NC}}$ where W_{NC} is work done by non conservative forces
	- $\Delta E = 0$ if all forces are conservative
	- $\Delta W_{\text{tot}} = \Delta W_C + \Delta W_{\text{NC}} = \Delta K$
	- $-U_e = \frac{1}{2}k\Delta x^2$ (elastic potential energy)

- $K = K_T + K_R$ where $K_T = \frac{1}{2}mv^2$ (transational); $K_R = \frac{1}{2}I\omega^2$ (rotational)

- $F = \dot{p}$ so if $F^{ext} = 0$; in collisions momentum is *conserved* ($p = mv = \text{const}$)
	- elastic: also conservation of total energy (never assume this unless stated!)
	- completely inelastic: both particles stick together post collision
	- $-\Delta p = F \cdot \Delta t = \mathbf{J}$ (impulse)
	- time avg. force: $\bar{F}_t = \frac{1}{T} \int_{t_i}^{t_f} F dt = \frac{J}{T} = \frac{\Delta p}{T}$
	- distance avg. force: $\bar{F}_d = \frac{1}{D} \int_{d_i}^{d_f} F dx = \frac{\Delta W}{D} = \frac{\Delta K}{D}$
- if you have two plots of v_x and v_y vs $t \to$ to determine angle check ratio between v_x^0 and v_y^0 .
- minimum to complete 1 revolution is $v = 0$ at peak (use energy conservation and recall that at peak $E = U$)
- to calculate deflection angle give eq. of motion in x, y we know $\tan(\theta) \approx \frac{dy}{dx}$.
- When changing reference frame think very carefully of where you will be and let intuition guide you
- to know how fast and how far: energy conservation; to know how much time: kinematics
- Rocket motion: $m \frac{dv}{dt} + u \frac{dm}{dt} = F_{\text{tot}}^{\text{ext}}$ (if no ext. forces left side is *conserved*)
	- $-$ rocket exhaust velocity u is taken relative to the rocket

1.2 Rotations

- Rolling without slipping: $v = \omega R$; $a = \alpha R$; $K_{\text{tot}} = K_{\text{tr}} + K_{\text{rot}} = \gamma m v^2$
	- point of contact with surface has always zero relative velocity
	- $-$ friction is the cause but it does no work (with no friction bodies would just slide)
- moment of inertia $I = \int r^2 dm = \int r^2 \rho dV \rightarrow$ Recall! r is distance from axis of rotation (not just origin)
	- $\frac{1}{12}Ml^2$ (rod); $\frac{1}{2}MR^2$ (disk-cylinder); $\frac{2}{5}MR^2$ (sphere)
	- $-I = I_{\text{CM}} + MR^2$ (parallel axis theorem)
	- if you have multiple objects attached to each other: sum individual Is as computed from the pivot
	- center of mass $r_{\text{CM}} = \frac{1}{M} \int r dm = \frac{1}{M} \int r \rho dV$
- angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\omega$ (if object is both rotating and translating then $\mathbf{L}_{\text{tot}} = \mathbf{L}_{\text{tr}} + \mathbf{L}_{\text{rot}}$
	- $-\tau = \frac{d\mathbf{L}}{dt} = \mathbf{r} \times \mathbf{F}$ (torque) \rightarrow if $\tau_{\text{tot}}^{\text{ext}} = 0$ angular momentum is conserved
	- if tension acts radially $L = \text{const}$, so we can have instances where E changes (tension does work to decrease radius) and L is conserved
	- $\mathbf{F}_{\text{tot}} = 0$ does not imply that **L** is conserved; it only means $\mathbf{a}_{\text{tot}} = 0!$
- if reference frame is rotating with constant angular velocity Ω it's not inertial!
	- We must add to $\mathbf{F}_{\text{tot}} = m\mathbf{a}$ two terms: $\mathbf{F}_{\text{centrifugal}} = -m\Omega^2 \mathbf{r}$ (apparent force against centripetal)
	- $\mathbf{F}_{\text{coriolis}} = -m\mathbf{\Omega} \times \mathbf{v}$ (only exists if object is non-stationary in rotating frame)
- for merry-go arounds and spinning disks problems angular momentum conserved $\rightarrow L_i = I_i \omega_i = I_f \omega_f = L_f$

1.3 Lagrangians

- $\mathscr{L} = T U \rightarrow \text{most important step is to find coordinates that define movement of body the best}$
- $E L$ eqs: $\frac{d}{dt} \left(\frac{\partial \mathscr{L}}{\partial \dot{q}} \right) = \frac{\partial \mathscr{L}}{\partial q}$ where $p = \frac{\partial \mathscr{L}}{\partial \dot{q}}$ (momentum conjugate)
- if $\frac{\partial \mathscr{L}}{\partial q} = 0 \to p$ is conserved.

• $\mathscr{H} = \sum_i p_i q_i - \mathscr{L} = T + U$ (if U not explicitly dependent on \dot{q}_i and t); $\dot{p} = -\frac{\partial \mathscr{H}}{\partial q}$; $\dot{q} = \frac{\partial \mathscr{H}}{\partial p}$

1.4 Orbits

- With central forces $\mathbf{L} = \text{const}$ so motion confined to a plane with $l = mr^2\dot{\phi} \rightarrow \mathcal{L} = \frac{1}{2}$ $rac{1}{2}m\dot{r}^2 + \frac{l^2}{2m}$ $\frac{v}{2mr^2} - U(r)$
- $F_{\text{gr}} = -\frac{GMm}{r^2}$; $U(r) = -\frac{GMm}{r}$; $V_{\text{eff}} = \frac{l^2}{2mr^2} + U(r)$
- With two bodies we use the same $\mathscr L$ with the $m \to \mu$ where μ is the reduced mass equal to $\frac{m_1 m_2}{m_1 + m_2}$
- with multiple gravitational masses $F_{\text{tot}} = \sum_i F_i^{\text{gr}}$ and from there get effective mass!
- $E_{\text{tot}} > 0$ (hyperbola-open); $E_{\text{tot}} = 0$ (parabola-open); $E_{\text{tot}} < 0$ (ellipse-bounded); $E_{\text{tot}} = V_{\text{min}}$ (circle-bounded)
- To find orbit radius set $V_{\text{eff}}(r) = 0$ (stable equilibrium if $V_{\text{eff}}(r) \geq 0$)
	- stable non-circular orbits can only occur for simple harmonic potential and the inverse-square law force
	- − given $F \propto r^{-n}$: for $n < 3$ a stable circular orbit *always* exists
	- bound orbits do not mean closed: they simply oscillate between two radii
	- distance of closest approach is when $\dot{r} = 0$ $(E = V(r)) \rightarrow$ watch out for what a distance is: if Sun is at 1 focus, $r \neq a$ which is the semi-major axis.
	- to determine shape of orbit compare its velocity to $v_{\text{esc}} = \sqrt{\frac{2GM}{r}}$ and $v_{\text{circ}} = \sqrt{\frac{GM}{r}}$

– for $r \to \infty$ $E_{r\to\infty} = K$; at closest approach $E_{r_{\min}} = V$ and since energy is conserved: $E_{r\to\infty} = E_{r_{\min}}$

• Kepler's Laws are: (I) planets are on elliptical orbits with sun at 1 focus (assumption $M_{\odot} \ggg m_p$); (II) orbits span equal areas in equal times $\rightarrow \frac{l}{m}dt = r^2 d\phi = dA$: $\frac{dA}{dt} = \frac{l}{m}$;

(III) $T = ka^{\frac{3}{2}}$ where a is semi-major axis of orbit and $k = \frac{2\pi}{\sqrt{2}}$ $\frac{2\pi}{G(m_p+M_\odot)}\approx \frac{2\pi}{\sqrt{G}\Lambda}$ GM_{\odot}

1.5 Springs

- $F_e = -kx \rightarrow \text{if springs connected } k_{\text{tot}} = \sum_i k_i \text{ (in parallel)}; 1/k_{\text{tot}} = \sum_i 1/k_i \text{ (in series)}$
- for spring problems always (I) try limit cases first (dimensional analysis/symmetry); (II) try conservation of energy and (III) as a last resort try to solve differential eq.
- S.H.0.: $\omega = \frac{k}{m}$; damped oscillators have additional damping term $F_{\text{damp}} = -b\dot{x}$ s.t.: $\boxed{m\ddot{x} + b\dot{x} + kx = 0}$.
	- underdamped: exponentially *decaying* oscillations $\rightarrow \omega_1^2 = \omega_0^2 \beta^2$ with $\omega_0^2 = k/m$; $\beta = b/2m$;
	- overdamped: no oscillation, just exponential decay
- driven Oscillator: guess complex solution $Ae^{i\omega t}$ where ω is driven frequency $\to A \propto 1/\sqrt{(\omega_0^2 \omega^2)^2 + 4\beta^2 \omega^2}$

-
$$
A^{\text{max}}
$$
 at $\omega_R = \sqrt{\omega_0^2 - 2\beta^2}$ (resonance); with no damping $A \propto 1/|\omega_0^2 - \omega^2|$

- For more than a spring, consider matrix of eqs. of motions from lagrangian analysis: $\sum_{k}(A_{jk}q_k + m_{jk}\ddot{q}_k) = 0$
	- guess $q_k = a_k e^{i\omega t}$ → solve det $(A_{jk} m_{jk}\omega^2) = 0$ (diagonalize the matrix) which gives the *n* frequencies ω_i at which system oscillates
	- # of normal $\omega_i = \#$ of independent variables needed to describe system
	- always ask yourself what are the simplest ways for a system to oscillate \rightarrow symmetric motion always lower frequency than antisymmetric motion
	- lowest collective motion has $\omega^2 = k_{\text{eff}}/m_{\text{eff}}$; highest motion is all out of phase with $\omega = \sum_i \omega_i$
- anything can be analyzed as an oscillation if we perturb system only slightly from its eq. of motion
- Recall for $\theta \ll 1 \rightarrow [\sin \theta, \cos \theta, \tan \theta] \approx [\theta, 1 \theta^2/2, \theta].$

1.6 Fluid Mechanics

- $P = \frac{dF}{dA}$ (pressure) $\rightarrow F = \int P dA$ where dA is the cross-sectional area
- given fluid at rest, pressure as function of height is $p p_0 \rho_p = \rho_p h$ (height of fluid on top of reference point P)
- equipressure means at given height pressure is the same!
- Bernoulli's principle $\frac{v^2}{2} + gz + \frac{p}{\rho} = \text{const}!$ (kind of conservation of energy eq.)
- fluid going through sectional area A_i with velocity v_i is conserved: $\rho \Delta t A_i v_i = \text{const} \Rightarrow A_i v_i$ is conserved if ρ is uniform and equal time
- Boyant force: $F_b = \rho V g$ (\uparrow upward direction) where ρ is the density of space where object is confined and V is the volume of the object:
	- if an object galleggia $F_g = F_b$
	- to lift a body from water the force required is $F_{\text{lift}} = F_g F_b$

2 Electricity & Magnetism

2.1 Electrostatics

- $\nabla \cdot \vec{E} = \rho/\epsilon_0$; $\nabla \times \vec{E} = 0 \rightarrow \vec{E} = -\nabla V$ with $V = -\int_a^b \vec{E} \cdot d\vec{l}$ (defined relative to some location)
	- V is usually set to zero at infinity; both \vec{E} and V are additive

$$
-\nabla^2 V = -\rho/\epsilon_0
$$
: $V(r) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(r)}{|r-r'|} d^3r' \to \text{from here compute } \vec{E}$

- $-\vec{F} = q\vec{E}$: per unit volume $(\rho \vec{E})$; area $(\sigma \vec{E})$
- to compute ρ use $\nabla \cdot \vec{E} = \rho/\epsilon_0$ (specifically if \vec{E} is given in vector form)
- Gauss's law: $\Big| q$ S $\vec{E}(r) \cdot d\vec{s} = \frac{Q_{\mathrm{enc}}}{r}$ $\frac{I_{\text{enc}}}{\epsilon_0}$ \Rightarrow use for *spherical* ($\sim \frac{1}{r^2}$); *cylindrical* ($\sim \frac{1}{r}$); *planar* (\sim const) symmetries
- Recall: always start by *symmetry* considerations to limit computation:
	- point charges: just sum up potential from single configurations and take *derivative* to find $\vec{E} \rightarrow \text{if point}$ charges vertices of polygon, then field and force at the center is zero
	- infinite plane with surface charge $\sigma: \vec{E} = \frac{\sigma}{2\epsilon_0}\hat{n}$; infinite line/cylinder with charge per length $\lambda: \vec{E} = \frac{\lambda}{2\pi\epsilon_0 r}\hat{r}$

 ϵ_0

- *V* is always *continuous*, derivatives of *V* too except at surface charges $\rightarrow BC_s$: $\boxed{E_{\text{out}}^{\parallel} E_{\text{in}}^{\parallel} = 0; E_{\text{out}}^{\perp} E_{\text{in}}^{\perp} = \frac{\sigma}{\epsilon_0}$
- \bullet image method (to determine V): place image charge at point given by *reflection* about plane
	- with plane: on opposite side at same distance
	- charges add up to the right amount in each region where we compute potential \rightarrow Recall to compute E field directly from configuration (do not take derivative of potential)
	- Recall: force on a charge is the same as that given by image charges \rightarrow work is only done on real charges (no energy cost to move image charges)
- Conductors: *inside* $\vec{E} = 0; \rho = 0; V = \text{const} \rightarrow \text{induce opposite charge}$ and leave all charges at surface $\sigma = -\epsilon_0 \frac{\partial V}{\partial n}$

– resistivity: $\rho = \rho_0(1 + \alpha \Delta T) \propto \Delta T$; conductivity: $\sigma \propto 1/\Delta T$ (for $T \uparrow \rightarrow \infty$)

- Semiconductors: decreasing electrical resistivity with increasing temperature: $\rho \downarrow$ continuously
	- $-$ current conduction via mobile electrons which are forbidden from being excited until they overcome band-gap
	- for $T \uparrow$ electrons overcome band-gap and are free from constraints of exclusion principle
	- doped materials: excess of holes: p−type; of electrons: n−type
	- Diode is $p n$ junction where I flows only if $V_{\text{app}} > V_{\text{bias}}$ and is *independent* of V_{app} ! \rightarrow Recall: a diode *blocks* the current in one direction and allows it in the other!
- $W = \frac{1}{2} \sum_i q_i V(r_i) = \frac{1}{2} \int \rho(r) V(r) d^3r$: work required to put together n charges (negative!) → sometimes convenient to think of work to move charges as $W = q\Delta V = q(V_f - V_i)$
- Energy stored in electric field is $U_E = \frac{\epsilon}{2} \int |E|^2 d^3r$ \to to find the work done to obtain a configuration $W = U_E^1 U_E^2$ (always take difference and then perform integral!)
- Recall: superposition principle applies to \vec{F} , \vec{E} , V , W
- Capacitors: $Q = CV$ where capacitance C depends on *geometry* of problem (for parallel plate capacitor $C = \frac{\epsilon_0 A}{d}$)
	- $U_C = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2}CV^2$ (energy stored);
	- if two conductors touch, they become *equipotential* and if $C_1 = C_2 = C$ then charge equally distributes
	- if capacitors are connected s.t. opposite plates face each other: $Q_{\rm tot} = Q_1 Q_2 \neq Q_1 + Q_2$
- total flux given electric field is always by Gauss's Law $Q_{\text{tot}}/\epsilon_0$ then think how many field lines hit the plane

2.2 Magnetostatics

- $\nabla \cdot \vec{B} = 0$ (no magnetic monopoles); $\nabla \times \vec{B} = \mu_0 \vec{J} \rightarrow \vec{B} = \nabla \times \vec{A}$
	- \vec{B} always *circles* around currents; $\vec{B}\rightarrow 0$ far away from current sources
	- $-\vec{F} = q\vec{v} \times \vec{B}$; on current $I: d\vec{F} = Id\vec{l} \times \vec{B}$ s.t. $\vec{F}_{1,2} = LI_2 \times \vec{B}_1$ (force on 2 by 1)
	- for cross products: cylindrical $\left|\hat{z}\times\hat{r}=\hat{\phi}\right|$; spherical: $\left|\hat{\phi}\times\hat{r}=\hat{\theta}\right|\Rightarrow$ other relations by cyclic permutations
	- $d\vec{K} = I d\vec{w}$ (surface current); $d\vec{J} = I dA$ (volume current)
	- $-\vec{J} = \sigma \vec{E} = nqv$ and σ conductivity; v drift velocity; n charge density (concentration)
	- $\vec{B}~$ do no work since $\vec{F} \perp \vec{v}$ (can only change direction of motion, not magnitude of velocity) \rightarrow energy still stored in \vec{B} field: $U_B = \frac{1}{2\mu_0} \int |B|^2 d^3r$
- Ampere's law: $\left| q\right|$ $\mathcal{C}_{0}^{(n)}$ $\vec{B} \cdot d\vec{l} = \mu_0 I_{encl} \rightarrow \text{use if there are symmetries: plane (planar) } \sim \text{const}; B \parallel \text{to the plane}$
	- circumferential: straight wire $\frac{\mu_0 I}{2\pi r}$ ∼ $\frac{1}{r}$; toroid $\frac{\mu_0 NI}{2\pi r}$ ∼ $\frac{1}{r}$ (in) and 0 (out);
	- solenoid ∼ const (in) and 0 (out) → $\vec{B} = \mu_0 nI\hat{z}$ where $N = #$ turns and I is calculated per unit length
- when symmetries cannot help: $\vec{B}(r) = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{l} \times \hat{r'}}{r^2}$; r where field is evaluated; r' vector from line element to r
- Recall: usually $I \parallel d\vec{l}$ and $I \parallel \vec{A} \rightarrow BC_s$: $B_{\text{out}}^{\parallel} B_{\text{in}}^{\parallel} = \mu_0 \vec{K} \times \hat{n}$; $B_{\text{out}}^{\perp} B_{\text{in}}^{\perp} = 0$
- cyclotron motion: $qvB = \frac{mv^2}{R} \to \omega = \frac{qB}{m}$ (freq.); $R = \frac{mv}{qB}$ (radius)
- diamagnetic materials have lower \vec{B} which does not change direction (opposite of ferromagnetic)
- Superconductors: outside surface $\vec{B}^{\perp} = 0$ (\vec{B} only tangential!)
	- when cooled below certain temperature, materials have 0 resistance \rightarrow explained by presence of *cooper* pairs: 2 electrons weekly bound with energy below Fermi energy s.t. favorable to pair up

2.3 Electrodynamics

- $\nabla \times \vec{E} = -\frac{\partial B}{\partial t} \Rightarrow \oint_C \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi_B}{\partial t} = \mathscr{E}$ (electromotive force): minus sign because by energy conservation induced currents must oppose magnetic flux (currents always reduced by induced \mathscr{E} !)
- $\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Rightarrow \oint_S \vec{B} \cdot d\vec{a} = \mu_0 I_{\text{enc}} + \mu_0 \epsilon_0 \frac{\partial \Phi_E}{\partial t}$ (e.g. charging capacitor involves *displacement* current)
- Recall when computing fluxes always use *cross-sectional* area \Rightarrow multiply by N turns when necessary
- mutual inductance $M: \Phi_1 = M_{1,2}I_2$; $\Phi_2 = M_{1,2}I_1$; $\Rightarrow \Phi_2/I_1 = \Phi_1/I_2$ (depends purely on *geometry*)
- self inductance L: $\Phi = LI$; $\mathscr{E} = -L\frac{dI}{dt}$ (depends on geometry) \Rightarrow to evaluate: compute flux; plug in Lenz's law as capacitors, inductors store energy $U_L = \frac{1}{2}LI^2 \Rightarrow$ for solenoid $\left| L/l = \mu_0 N^2 A \right|$
- Recall: if a wire is being *wound* around: magnetic flux is changing!
- electric dipoles: $\vec{p} = \sum_i q_i \vec{d}_i = \int \vec{r} \rho(r) d^3 \vec{r} \Rightarrow V(r) = \frac{\vec{p} \cdot \hat{r}}{4 \pi \epsilon_0 r^2} \sim \frac{1}{r^2}$ hence $\vec{E} \sim \frac{1}{r^3}$ tend to align with \vec{E} field: $\vec{N} = \vec{p} \times \vec{E}$ (torque); $U = -\vec{p} \cdot \vec{E}$ (where $F = -\nabla U$)
- magnetic dipoles $\vec{m} = I \vec{A}$ (vector pointing normal to surface) $\Rightarrow \vec{B} = \frac{m_0}{4\pi r^3} (2 \cos \theta \hat{r} + \sin \theta \hat{\theta}) \sim \frac{1}{r^3}$
 $\vec{N} = \vec{m} \times \vec{B}$ (torque); $U = -\vec{m} \cdot \vec{B}$ (where $F = -\nabla U$) \Rightarrow field far from curre
- *Multipole* expansion: the n^{th} term $\propto 1/r^{n+1}$ for $n = \{0, 1, 2, ...\}$

– in \vec{E} field with net charge: monopole term dominates; in \vec{B} field/ in \vec{E} with $Q_{\text{tot}} = 0$ dipole term dominates

- in matter polarization **P** (electric dipole moment per unit vol.) causes bound charges: $\sigma_b = \mathbf{P} \cdot \hat{n}$; $\rho_b = -\nabla \cdot \mathbf{P}$ \rightarrow to compute field just apply usual Gauss's law and other rules using these new charges
	- $-P = \epsilon_0 \chi_e \vec{E}; \ \vec{D} = \epsilon \vec{E} \text{ with } \epsilon = \epsilon_0 (1 + \chi_e) = \epsilon_0 \kappa \Rightarrow \text{new BC}_s: \left| \epsilon_1 E_1^{\perp} \epsilon_2 E_2^{\perp} = \sigma_f \right|$

- For simplest configurations \vec{E} transform by $\epsilon_0 \to \epsilon$: parallel plate capacitor $C = \frac{\epsilon A}{d} = \kappa \frac{\epsilon_0 A}{d}$

- if *dielectric* change ⊥ \vec{E} : \vec{D} uniquely determined \vec{E} changes; $\parallel \vec{E}$: \vec{E} uniquely determined \vec{D} changes
- in matter magnetization M (magnetic dipole moment per unit vol.) causes bound current: $\vec{K}_b = M \times \hat{n}$; $\vec{J}_b = \nabla \times \mathbf{M} \rightarrow$ to compute field just apply usual Ampere's law and other rules using these new currents $\mathbf{M} = \frac{\chi_m}{\mu} \vec{B};\, \vec{H} = \frac{\vec{B}}{\mu}$
- Recall: if $\vec{E} \parallel \vec{B}~$ since $\vec{v} \parallel \vec{E}~$ then $\vec{v} \parallel \vec{B}~$ and hence $\vec{F}_{\text{mag}} = 0$
- Recall: if charge *oscillates* back and forth, the field should be still maximized *near* particle

2.4 E-M waves & Radiation

- in vacuum plane waves with speed $c = 1/\sqrt{\epsilon_0\mu_0}$: $\tilde{E}(\vec{r}) = \tilde{E}_0 e^{i(\vec{k}\cdot\vec{r}-wt)}\hat{n}$; $\tilde{B}(\vec{r}) = (\hat{k}\times\tilde{E})/c$
- the pointing vector: $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B}) \rightarrow$ energy per unit area, per unit time/Power per unit area

-
$$
P = \oint_S \vec{S} \cdot \vec{a}
$$
 (Power); $I = \langle S \rangle = \frac{1}{2} c \epsilon_0 E_0^2$ (intensity)

- BC_s at x-z plane: (i) $\epsilon_1(\tilde{E}_{0,I} + \tilde{E}_{0,R})_z = \epsilon_2(\tilde{E}_{0,T})_z$; (ii) $(\tilde{B}_{0,I} + \tilde{B}_{0,R})_z = (\tilde{B}_{0,T})_z$; (iii) $(\tilde{E}_{0,I} + \tilde{E}_{0,R})_{xy} = (\tilde{E}_{0,T})_{xy}$; (iv) $\frac{1}{\mu_1} (\tilde{B}_{0,I} + \tilde{B}_{0,R})_{xy} = \frac{1}{\mu_2} (\tilde{B}_{0,T})_{xy}$
- B_R reflected always *opposite* sign w.r.t. $B_T \to$ change also sign of k if wave goes opposite way
- perfect conductor: $E_T = 0 \rightarrow E_{0,I} = -E_{0,R}$ (all fields to the left cancel; B fields same direction, sum up)
- accelerating electric charge (for $v \ll c$) radiates s.t. $P = \frac{\mu_0 q^2 a^2}{c}$ $\frac{dq}{d\sigma} \propto q^2 a^2$; a could depend on m (since $a = \frac{F}{m}$): $P \propto \frac{1}{m^2}$
- oscillating dipole with moment $p = p_0 \cos(\omega t)$ radiates s.t. $\langle S \rangle = \left(\frac{\mu_0 p_0^2 \omega^4}{12\pi c}\right) \frac{\sin^2 \theta}{r^2} \propto \frac{p_0^2 \omega^2}{r^2}$ $\frac{d^2\omega^2}{r^2}\sin^2\theta \to \text{no radiation}$ along dipole axis (recall: monopoles do not radiate!)

$$
\langle P \rangle_E = \frac{\mu_0 p_o^2 \omega^4}{12\pi c} \propto p_0^2 \omega^4; \langle P \rangle_B = \frac{\mu_0 m_o^2 \omega^4}{12\pi c^3} \propto \frac{m_0^2 \omega^4}{c^3} \ll \langle P \rangle_E
$$
 (electric radiation dominates)
– a sphere of total charge Q that expands and contracts has total radiated power equal to zero

2.5 Circuits

- $V_R = IR$; $V_C = \frac{Q}{C}$; $V_L = -L\frac{dI}{dt} \rightarrow$ energy stored in capacitors $(U_C = \frac{1}{2}CV^2)$ and inductors $(U_L = \frac{1}{2}LI^2)$; dissipated in resistors $(P_{\text{dis}} = IV = I^2 R)$ where $\boxed{R = \rho l/A} \Rightarrow$ to relate it to force recall $\vec{F} \cdot \vec{v} = P$
- if you have n resistors with equal $R \Rightarrow$ in series: voltage multiplicator by n; in parallel: voltage divider by n
- loop rule: $\sum_i V_i = 0$; junction rule: $I_{\text{in}} = I_{\text{out}} \Rightarrow$ Theven in equivalent: any combination of voltage source/ currents/ resistors is equivalent to 1 voltage source + 1 resistor
- For AC circuits use *Impedance*: $Z_R = R$; $Z_C = \frac{1}{i\omega C}$; $Z_L = i\omega L$ with $Z_{\text{tot}} = |\sum_i Z_i|$
	- RC and RL circ.: $\tau_{RC} = RC$ (discharging const.); $\tau_{RL} = \frac{L}{R}$ (response time) \Rightarrow time to drop V by 1/e

- RLC circ.:
$$
\omega_{\text{res}} = \frac{1}{\sqrt{LC}}
$$
 where $\langle P \rangle = I_{\text{rms}}^2 R$ with $I_{\text{rms}} = \frac{\sqrt{2}}{2}I$ (like damped. harmonic oscillator)

- LC circ.: $\omega = \frac{1}{\sqrt{LC}}$ (like simple harmonic oscillator)
- *resonance*: frequency where *imaginary* part of impedance Z goes to zero!
- for $\omega \to \infty$ capacitors act like *short* circuit; inductors like *open* circuit; for $\omega \to 0$ viceversa
- LP-filter: RC circ. with C on output (capacitor is $low/$ connected to the ground) $\Big|$ $\left| \frac{V_0}{V_i} \right| = 1/\sqrt{1 + (RC\omega)^2}$
- HP-filter: RC circ. with R on output (resistor is $low/$ connected to the ground) $\left|\frac{V_0}{V_i}\right| = RC\omega/\sqrt{1 + (RC\omega)^2};$ RL circ. with L on output (inductor is $low/$ connected to the ground) $\left. \frac{V_0}{V_i} \right| = R/[\omega L \sqrt{1 + (R/\omega L)^2}];$ generally for filters: compute impedance and check limit cases $\omega \to \{0; +\infty\}$
- sudden switch can be thought as *ultra-high* frequency event ($\omega = \infty$ at $t = 0$) which gradually relax to small frequencies s.t. $\omega = 0$ at $t = \infty$ \Rightarrow when switch is closed V_L is max since it's $\propto \frac{dI}{dt}$
- Recall: never forget *internal* resistance, if it's mentioned it's important!
- to maximize power transmitted one needs *impedance* of source to be *equal* to that of output
- OP-AMP: gain \uparrow ; input impedance \uparrow ; output impedance $\downarrow \Rightarrow$ use feedback circuit to control gain
- transformers consist of two coils with $V_s/N_s = V_p/N_p$, hence by energy cons. $I_pV_p = I_sV_s \Rightarrow I_p = I_sN_s/N_p$
- The hall effect: used to determine *sign* of charge carriers according to $R_H = -\frac{1}{nec}$
- Logic gates: elements take on *discrete* values \Rightarrow AND: *true* only if both A and B are true
	- OR: always true except if both A and B are false; NOT: returns opposite of A (\bar{A})
	- NAND; NOR: just usual AND; OR for *inverted* inputs $\Rightarrow \overline{A \cdot B} = \overline{A} + \overline{B}$; $\overline{A + B} = \overline{A} \cdot \overline{B}$
	- a series of NAND or any other logical gate can be combined to create any sequence of logical gates

3 Waves

3.1 Foundations

- $\frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x^2} \to$ for any f the related function $f(x \pm vt)$ solves equation
	- linear solutions: if f, g solves equation also $Af + Bg$ does!
	- wave travelling to the right: sign $(x vt)$; left: + sign $(x + vt)$
	- standing wave: $f(x, t) = A(x)B(t) \rightarrow$ shape oscillates in time but doesn't go anywhere; can be rewritten as sum of left and right moving wave
	- Intensity: $I \sim A^2$ (energy carried); $\lambda = 2\pi/k$; → de-coupled waves add their intensities separately
	- $-T = 2\pi/\omega$; $\omega = 2\pi f \Rightarrow k$ is wave-vector whose direction tells us where the wave propagates
- dispersion relation is $\omega(k)$: phase velocity $v_p = \frac{w}{k}$ (velocity of individual crest)
	- group velocity $v_g = \frac{d\omega}{dk}$ (speed of wave packet/ at which information travel; must be less than c) v_p can be greater than v_g and even than $c!$
	- classically $\omega(k) = vk$; quantum particles $\omega(k) = \frac{\hbar k^2}{2m}$ 2m
- wave examples: $string: v = \sqrt{\frac{T}{\mu}}$ with T tension and μ mass density; sound $c_s = \frac{\kappa}{\rho}$ with κ measure of stiffness and ρ as density: ratio of change in pressure to fractional volume compressed
- in medium with index of refraction n: $v_1 = v_0/n$; $\lambda_1 = \lambda_0/n$; $f_1 = f_0$ (freq. is const) minimum speed of particle in medium is just $v = v_i/n$
- Polarization gives direction of wave \Rightarrow longitudinally pol. wave: same direction as displacement of wave medium
	- polarized in direction \hat{n}_0 : $I = I \cos^2 \theta$ with $\hat{n} \cdot \hat{n}_0 = \cos \theta$
	- two polarizers at $\frac{\pi}{2}$ no light transmitted; two at $\frac{\pi}{2}$ and one in the middle at $\frac{\pi}{4}$: output is *not* zero!
	- if unpolarized (light in every direction) light shines on polarizer: $I = \langle I \rangle = I_0/2$
	- Brewster angle $\theta_B = \arctan\left(\frac{n_1}{n_2}\right)$: light reflected off polarized \perp to plane formed by incident ray and normal to surface \Rightarrow if light polarized \parallel to incident plane: no reflection at all
- Doppler effect: $f = \left(\frac{v + v_r}{v}\right)$ $v - v_s$ f_0 where v_r of receiver and v_s of source
	- if source moving *away*: v_s negative, $f \downarrow$; *towards*: v_s positive, $f \uparrow$
	- $-$ formula is only valid if receiver and source moving *directly* towards or away from each other
	- f is *constant*: the falling freq. sound only given by varying angle
	- $-$ Be very careful with velocity of receiver and source: do not confuse with velocity of medium v
- Pipes: *open* end is a node (no change in pressure!); *closed* end is anti-node
	- lowest mode approach: open pipe $\to \frac{\lambda}{2}$ so $\lambda_{\text{max}} = 2L$; closed pipe $\to \frac{\lambda}{4}$ so $\lambda_{\text{max}} = 4L$ \rightarrow fundamental harmonics are respectively $f_m = \{\frac{mv}{2L}, \frac{mv}{4L}\}$
	- $-f_{\text{beat}} = f_1 f_2 \rightarrow \text{if I choose } f_0$ to be fundamental harmonics then the n^{th} harmonic has frequency $f_n = nf_0$
- wavelengths orders of magnitude: *radio* (mm to km); *visible* (400nm to 700nm); $x\text{-}rays$ (0.01nm to 10nm)

3.2 Interference patterns

- general interference pattern: $\Delta \delta = 2m\pi$ (constructive); $\Delta \delta = (2m+1)\pi$ (destructive) where $\Delta \delta = k\Delta x$
- Double slit (separation d): $|d \sin \theta = m\lambda|$ (constructive); $|d \sin \theta = (m + 1/2)\lambda|$ (destructive) # of fringes given angular aperture $\alpha = 2\theta \Rightarrow \# = 2m!$
- Single slit (large a): $|a \sin \theta = m\lambda|$ (minima) \Rightarrow first minima gives width of central maximum: $2L \tan \theta \approx 2L\theta$ to find *sharpest* image minimize first diffraction pattern according to eq. sin $\theta \approx \theta = \frac{\lambda}{d}$
- Optical path length \Rightarrow wave travels different distances in different media: $\Delta x = nd$ where $\Delta \delta = k\Delta x$
	- for $n \to \infty$ slows down so much that goes over infinitely many cycles
	- $-$ in thin film of thickness d there are two sources of phase-shift:
		- (1) going from medium n_1 to n_2 : $\Delta \delta = \{0 \text{ if } n_2 < n_1 \text{ ,} \pi \text{ if } n_2 > n_1\}$ (corresponds to $\Delta \lambda = \{0, \frac{\lambda}{2}\}\$) (2) $\Delta x = 2dn_2$ (path length) \Rightarrow in tot. if $n_2 > n_1$ constructive inter.: $2dn_2 = (m + 1/2)\lambda$
- Bragg diffr.: $d \sin \theta = \frac{n\lambda}{2}$ (constructive) \rightarrow from crystal lattice modelled as set of \parallel planes at distance d apart
- given number of slits per unit length *constructive* interference appear at $\frac{L}{N} \sin \theta = m\lambda$
- Rayleigh criterion for *circular* apertures: first diffraction minimum at $D \sin \theta = 1.22\lambda$
	- $-$ minimum angle for two images to be resolved: $\theta \approx \frac{1.22\lambda}{D}$ \rightarrow if they give you the frequency, recall that to get the wavelength it's simply $\lambda f = c$
	- $-$ Rayleigh scattering (for λ ≫ a): $I \propto I_0 \lambda^{-4} a^6$ ⇒ think of this formula when particle scattering is mentioned
- Interferometer: a fringe shift occurs every $\frac{d}{\lambda}$ hence # of fringes is $m = \frac{2d}{\lambda}$
- interference is produced if sources are *coherent*: 500Hz already much greater than max-freq. of human eye
- Resolving power of spectrometer is $\Delta\lambda/\lambda$

3.3 Optics

- Geometric optics (for $\lambda \ll a$): $n_1 \sin \theta_I = n_2 \sin \theta_T$; $\theta_I = \theta_R$ total *internal* reflection is when $\sin \theta_T > 1$ or $\frac{n_1}{n_2} \sin \theta_I > 1$
- be always careful: angles w.r.t. the *horizon* are different than angles w.r.t. *normal*
- plane mirrors: $p = -i$ with p object; i image \rightarrow if $i < 0$ image to the left of mirror
- *spherical* mirrors: $\left| \frac{1}{n} \right|$ $\frac{1}{p} + \frac{1}{i}$ $\frac{1}{i} = \frac{1}{f}$ $\frac{1}{f}$ with f as the distance to focus where all *parallel* rays converge
	- $-m = -\frac{i}{p}$ (magnification) \rightarrow sing determines orientation: + upright; inverted
	- $-$ for *idealized* spheres $f = \frac{R}{2}$ (+ if center of curvature on *same* side of incoming light; $-$ viceversa)
	- to draw image: 1 light ray \parallel and 1 going through *focus*
- Lenses are converging: 2 convex surfaces, f+; diverging: 2 concave surfaces, f−
	- $\left| \frac{1}{\cdot} \right|$ $\frac{1}{p} + \frac{1}{i}$ $\frac{1}{i} = \frac{1}{f}$ $\frac{f}{f}$ \rightarrow Recall: distances are + when on the other side of lens and $-$ if they return back
	- − in terms of radii of of curvature of two surfaces of lens: $f = (n-1)\left(\frac{1}{R_1} \frac{1}{R_2}\right)$
	- $-$ when you have multiple lenses treat them $\emph{independently}$
	- magnification of telescope made of *objective* and *eye-piece* is $M = \frac{f_o}{f_e}$
	- to draw image for converging lens: rays through both focuses; diverging lens: 1 ray through focus and 1 through center \Rightarrow in general when rays *converge* image is *real*; when they *diverge* is *virtual!*

4 Thermo & Stat-Mech

4.1 Microscopic Ensembles

• Canonical distribution \rightarrow an ensemble in contact with heat reservoir $(T, V, \text{and } \# \text{ particles are fixed})$

$$
- P_r = \frac{e^{-\beta E_r}}{Z} \text{ where } Z = \sum_r e^{-\beta E_r} \text{ (partition function)}; \ \beta = \frac{1}{k_B T}
$$

$$
- \bar{y} = \frac{1}{Z} \sum_r y_r e^{-\beta E_r} \rightarrow \bar{E} = -\frac{\partial \ln Z}{\partial \beta}; \ \Delta E^2 = -\frac{\partial \bar{E}}{\partial \beta} = -\frac{\partial^2 \ln Z}{\partial \beta^2}
$$

- $dW = \bar{X}dx$ where $\bar{X} = -\frac{\partial \bar{E}}{\partial x} = \frac{1}{\beta} \frac{\partial Z}{\partial x} \rightarrow$ implies $\bar{p} = P = \frac{1}{\beta} \frac{\partial \ln Z}{\partial V}$
- If there are N subsystems $Z_{\text{tot}} = \prod_i Z_i \rightarrow$ if systems of *indistinguishable* particles $Z_{\text{tot}} = \frac{1}{N!} \prod_i Z_i$
- I.M.G.: $Z_i = \frac{V_0}{\hbar^3} \int_{-\infty}^{\infty} e^{-\frac{\beta p^2}{2m}} d^3p = V_0 \left(\frac{2\pi m}{\hbar \beta}\right)^{\frac{3}{2}} \propto \beta^{-\frac{3}{2}}$
- relativistic particles: $Z_i = \frac{V_0}{\hbar^3} \int_{-\infty}^{\infty} e^{-\beta p c} 4\pi p^2 dp = \frac{8\pi V_0}{(\hbar \beta c)^3} \propto \beta^{-3}$
- microcanonical ensemple: *fixed* energy and temperature
- if we allow particles to be exchanged: $\mathscr{Z} = \sum_{APS} e^{-\beta E_r \alpha N_r}$ (gran partition function); $\alpha = -\mu\beta$ $−$ μ is the chemical potential (if $\mu_A = \mu_B$ no particle flow) \rightarrow ; $\bar{N} = -\frac{\partial \ln \mathscr{Z}}{\partial \alpha} = \frac{1}{\beta} \frac{\partial \ln \mathscr{Z}}{\partial \mu}$
- Entropy is a measure of uncertainty on state of system: $S = k_B \ln \Omega$ where $\Omega = \#$ of microstates

$$
- S = -k_B \sum_i p_i \ln p_i = \frac{\partial}{\partial T} (k_B T \ln Z)
$$

- at fixed temperature: $S = k_B(\ln Z + \beta \bar{E})$; for I.M.G.: $S = N k_B \ln \left(\frac{V T^{\frac{3}{2}}}{N}\right) + \text{const}$
- if types of particles are the same sum up individual entropies otherwise use the usual formula $S = k_B \ln \Omega$
- Recall: $\ln(n!) \approx n(\ln(n) 1);$ $\binom{N}{M} = \frac{N!}{M!(N-M)!}$ (ways of separating a group of M people from a pool of N)

4.2 Thermodynamics

- Equipartition theorem: each d.o.f. (quadratic term) in Hamiltonian contributes $\frac{1}{2}k_BT$ to internal energy
	- $#$ of transitional d.o.f.: $#$ of dimensions;
	- # of rotational d.o.f.: # of dimensions -1 (linear mol.); # of dimensions (non-linear mol.)
	- # of vibrational d.o.f.: $3N 6$ for $N > 2$ (linear mol.) \rightarrow the only to depend on the # of particles
	- vibrational energies of diatomic molecule are approximately those of harmonic oscillator ($k_BT \approx \hbar\omega = hf$) \rightarrow these modes only become *frozen* at temperatures 1 order of magnitude larger than room-temp ($\sim 10^3$ K)
	- $-$ generally the higher T the more modes are unfrozen for low T : only transitional (atoms as *rigid dumbells*) *rotational* freeze at $T \sim 1$ K (they are *free* at room temp.) for $T \gg 1$ all modes unlock (atoms become springy)
- Laws of thermodynamics: at equilibrium $T_A = T_B$ (most probable system) with $T = 1/\frac{\delta S}{\delta E} \to S$ is maximized
	- $\Delta U = Q W \rightarrow dE = dQ dW$ where $dQ = T dS$; $W = \overline{X}_{\alpha} dx_{\alpha} = P dV$
	- $\Delta S \ge \int \frac{dQ}{T}$ where $\frac{dQ}{T} = S_{\text{rev}}$ (reversible process) $\rightarrow \Delta S_{\text{univ}} \ge 0$
	- for reversible processes $\Delta S_{\text{univ}} = 0 \rightarrow$ note on single interactions we can have $\Delta S < 0$.
	- Quasi-static (QS) processes correspond to infinitely slowly as a succession of thermodynamics equilibriums
	- $-S(T \to 0) = 0$ (not always if ground state is degenerate)
	- A cooler body can never just heat up a hotter body
- Heat capacities: $c_y = T \left(\frac{dS}{dT}\right)_y = \left(\frac{dQ}{dT}\right)_y$ hence $\rightarrow c_v = \left(\frac{dQ}{dT}\right)_V = \left(\frac{dE}{dT}\right)_V$; $c_p = \left(\frac{dQ}{dT}\right)_P$
	- $-$ for conductors (*metals*) $c_v \propto T^3$ → if material is superconductor c_v jumps up and then goes back down
	- for relativistic gases $c_v = 3k_BT$
- Recall: spin always plays a role in determining the specific heat of an object
- Enthalpy: $H = E + PV$ ($dH = TdS + VdP$); Free energy: $F = E TS$ ($dF = -SdT PdV$); Gibbs free energy: $G = F + PV$ $(dG = -SdT + VdP)$
	- $-$ Maxwell relations can be found by equating the *second* derivative of each potential in terms of their parameters (think of the parameters as partial derivatives of one of the functions)
	- $\tilde{\theta}$ when # of particles is not fixed, chemical potential becomes useful $\mu = \left(\frac{\partial F}{\partial N}\right)_{T;V} = \left(\frac{\partial E}{\partial N}\right)_{S;V}$

$$
-T = \left(\frac{\partial U}{\partial S}\right)_V; P = \left(\frac{\partial U}{\partial V}\right)_S \rightarrow \left(\frac{\partial P}{\partial S}\right)_V = -\left(\frac{\partial T}{\partial V}\right)_S
$$

• Ideal Gases: $\Omega(E, V) = BV^N E^{\frac{3N}{2}}$; $\bar{p}V = PV = nRT = Nk_BT$

- $-E = \frac{3}{2} N k_B T$; $c_p = c_v + N k_B$; $c_v = \frac{\#d.o.f.}{2} N k_B$; $\gamma = \frac{c_v}{c_p} \rightarrow \gamma = \frac{5}{3}$ (mono-atomic); $\gamma = \frac{7}{5}$ (di-atomic);
- Isothermal (*T* = const): Δ*E* = 0; Δ*Q* = Δ*W* = *nRT* ln $\frac{V_f}{V_i}$; Δ*S* = *nR* ln $\frac{V_f}{V_i}$ → during isothermal exp. *F* ↓
- Isocoric (*V* = const): $\Delta E = \Delta Q = c_v \Delta T$; $\Delta W = 0$; $\Delta S = c_v \ln \frac{T_f}{T_i}$
- Isobaric (P = const): $\Delta E = c_v \Delta T$; $\Delta Q = c_p \Delta T$; $\Delta W = P \Delta V$; $\Delta S = c_p \ln \frac{T_f}{T_i}$
- Adiabatic-isentropic ($Q_{\text{in}} = Q_{\text{out}} = 0$): $\Delta E = -\Delta W = c_v \Delta T$; $\Delta S = \Delta Q = 0$ $PV^{\gamma} = \text{const}; V^{\gamma-1}T = \text{const}$
- given same fractional increases $\Delta S_p > \Delta S_v > \Delta S_T > \Delta S_{\text{adiabatic}}$
- we can also write $\Delta Q = cm\Delta T$ where c is the specific heat of a material $(c_{\text{water}} = 418 \text{JK}^{-1}\text{g}^{-1})$
- Free Expansion: $Q = 0$ (system adiabatically isolated); $W = 0$ (no work in the process) $\rightarrow \Delta E = 0$
	- if I.G. since $E \propto T$: $\Delta T = 0$; if not I.G. for $V_2 > V_1$: $T_2 < T_1$ (temperature decreases)
	- $-$ This is not QS/reversible process $\Delta S \neq 0 = nR \ln \frac{V_f}{V_i}$ → $\Delta S_{FE} = \Delta S_T$ so it corresponds to minimum entropy change for expansion (recall adiabatic does *not* mean $\Delta S = 0$)
- Heat engines: $\Delta E_{\text{tot}} = 0$ (cycle); $\Delta W = \Delta Q_{\text{in}} \Delta Q_{\text{out}} = \int T dS$

$$
- \eta = \frac{\Delta W}{\Delta Q_{\text{in}}} = 1 - \frac{\Delta Q_{\text{out}}}{\Delta Q_{\text{in}}} \text{ (efficiency)}
$$

- for reversible processes $\Delta S_{\text{universe}} = 0$ so $\Delta S_{\text{machine}} = \frac{\Delta Q}{T}$ which implies $η = 1 \frac{T_{\text{out}}}{T_{\text{in}}}$
- Cornout Cycle: 2 adiabatic; 2 isothermal (rectangle in S-T space)
- $-$ *clockwise* paths (expansions) in P-V;S-T planes do *positive* work
- Van der Walls gases: $\left(P + \frac{N^2 a}{V^2}\right)(V Nb) = Nk_B T \rightarrow a$, b respectively measure *attraction*, size of particles
- Recall: if gases are identical and one removes partition *nothing* changes $\rightarrow \Delta S = 0$ (no additional states)
- Never assume the gas is monotone unless it explicitly says it!

4.3 Quantum Statistics

- Average energy: $\langle \epsilon \rangle = \int_0^\infty \epsilon \bar{n}(\epsilon) \rho_{\epsilon} d\epsilon$; Average # of particles: $\langle N \rangle = \int_0^\infty \bar{n}(\epsilon) \rho_{\epsilon} d\epsilon$
- to derive average occupation number at energy level r , $\hat{h}x$ energy and think in terms of number of particles
- ρ is the density of states with $\rho_k = \frac{gV k^2}{2\pi^2}$ and $g = \#$ degeneracies (careful with what this number is) $\rightarrow \rho_{\epsilon} = \rho_k \left(\frac{d\epsilon}{dk}\right)^{-1}$ with $\epsilon = pc = \hbar ck$ (relativistic) and $\epsilon = \frac{\hbar^2 k^2}{2m}$ (classical)
- Bosons are indistinguishable and as many as you want in 1 state
	- $-$ at energy ϵ_r : $\mathscr{Z}(\epsilon_r) = \sum_i e^{-\beta(\epsilon_r \mu) \cdot i}$ with $i = \text{\# particles; occupation} \mid \bar{n}^{\text{BE}}(\epsilon_r) = 1/(e^{\beta(\epsilon_r \mu)} 1)$
	- for $T \to 0$ collection of bosons in ground state approaches infinity
- Fermions are *indistinguishable* and at most 1 per state
- $-$ at energy ϵ_r : $\mathscr{Z}(\epsilon_r) = 1 + e^{-\beta(\epsilon_r \mu)\cdot}$; occupation $\left| \bar{n}^{\text{FD}}(\epsilon_r) = 1/(e^{\beta(\epsilon_r \mu)} + 1) \right|$
- for $T \to 0 \bar{n}^{\text{FD}}(\epsilon_r) = \{0 \text{ if } \epsilon_r > \mu; 1 \text{ if } \epsilon_r < \mu; \frac{1}{2} \text{ if } \epsilon_r = \mu = \epsilon_F \text{ (Fermi energy)}\}\$
- when there are only two states think of Fermi Dirac statistics
- free electrons only behave kinematically and by Pauli exclusion principle: $E_F = \frac{\hbar^2 k_F^2}{2m}$ with $k_F = (3\rho^2 \pi^2)^{\frac{1}{3}}$ $\rho =$ electron density; $n = \frac{N}{V} \rightarrow \left| k_F \propto n^{\frac{1}{3}}$; $E_F \propto n^{\frac{2}{3}}$
- velocity in materials is always $v_{\text{ind}} = \sqrt{\frac{\alpha RT}{m}}$: in I.G. for ind = {rms, mode, avg} $\alpha = \{3, 2, 8\}$
- Recall: if Maxwell Boltzmann description $\vec{v}_{\text{avg}} = 0$ (including direction)
- Debeye & Einstein models assumed 3N oscillator model \rightarrow Einstein: all with same frequency; Debeye: spectrum of frequencies
- Power emitted by blackbody is $P = \sigma \epsilon A T^4 \propto T^4$

$$
- I = \frac{2\hbar\omega^3}{c^2} \cdot \frac{1}{e^{\frac{\hbar\omega}{k_B T}} - 1} \propto \omega^3
$$
 (intensity)

– The peak of the spectrum is at $\boxed{\lambda_{\max} = 2.9 \cdot 10^{-3} \text{K} \cdot \text{m} / T \propto 1 / T}$

5 Quantum Mechanics

5.1 Foundations

 $\bullet \ \frac{\hbar^2}{2m}$ $\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x) \psi = i\hbar \frac{\partial \psi}{\partial t} \rightarrow$ separation of variables: t) $\frac{\partial \psi}{\partial t} = -i\frac{E}{\hbar} \psi$; x) $H\psi = E\psi$ (T.I.S.E.)

- general solution $\Psi(x,t) = \sum_n c_n \psi_n e^{-E_n t/\hbar}$ where $c_n = \langle \psi_n | \psi \rangle$ and $P_n = |c_n|^2$ $\langle \psi_n | \psi_m \rangle = \delta_{mn}$ (eigenfunctions are orthogonal)

- the observed quantities are the eigenvalues q_n ; while the expected value $\langle Q \rangle = \sum_n q_n |c_n|^2$
- Hamiltonian eigenstates are *stationary*: expectation values are *constant*: $\frac{d\langle \hat{Q} \rangle}{dt} = 0$; $[\hat{Q}; H] = 0$ \to if $\Psi(x,0) = \Psi_n(x)$ (initial state= stationary); the probability of getting E_n at any other time is 1
- superposition of eigenstates are not stationary and introduce a factor $\propto \sin \theta / \cos \theta$ where $\theta \propto (E_1 E_2)t/\hbar$ \rightarrow Recall: the energy eigenvalues and relative probabilities are still *constant* in time
- Ψ needs to be normalizable s.t. $\int_{-\infty}^{\infty} |\Psi||^2 dx = 1 \to \text{recall } \Psi$ is just a wavefunction; $|\Psi|^2$ is the probability distribution (*e.g.* $\int_a^b |\Psi|^2 dx$ is probability to find particle in $x \in (a, b)$)
- if problem doesn't explicitly state Ψ is *normalized*, you should do it yourself before computing anything else
- Ψ has dimensions $d/2$ where $d = \#$ spatial dimensions
- Hermitian operators: $\langle f|\hat{Q}|f\rangle = \langle \hat{Q}f|f\rangle$ as $\hat{Q} = \hat{Q}^{\dagger} \rightarrow$ Hermitian conjugate is transpose + conjugate: $A^{\dagger} = (A^T)^*$
	- $-\hat{Q}\psi_n = q\psi_n$ where q is real (eigenvalues must be real and represent *observables*)
	- $-$ any operator involving 1 derivative *without* the factor of i , it cannot be hermitian
	- total energy operator is $E = i\hbar \frac{\partial}{\partial t}$
- Recall: the expect. value of an imaginary number is zero (not observable) \rightarrow if Ψ real and \hat{Q} imaginary: $\langle \hat{Q} \rangle = 0$
- Commutator $[A, B] = AB BA \rightarrow$ when evaluating them always apply them to a *wavefunction*
	- $[AB, C] = A[B, C] [A, C]B; [A; B] = –[B; A]$
	- if commutator is zero, operators are compatible and constitute complete set of simultaneous eigenfunctions ψ_n
	- if operator \hat{O} commutes with Hamiltonian, the corresponding observable is *conserved*
	- uncertainty principle: $\sigma_x \sigma_p \geq \frac{\hbar}{2}$ $\frac{\hbar}{2}$ since $[x, p] = i\hbar$ where $p = i\hbar \frac{\partial}{\partial x}$ (minimum corresponds to Gaussian wave-packet)
	- $\sigma_t \sigma_E \geq \frac{\hbar}{2} \to$ to make computations approximate $\Delta x \Delta p \approx \hbar$; $\Delta t \Delta E \approx \hbar$
	- when they ask you for a lower bound (like minimum radius) think of uncertainty principle
- the wavefunction ψ is always *continuous*; $\frac{\partial \psi}{\partial x}$ is only discontinuous where $V(x) \to \pm \infty$
	- $-\psi_n$ has n nodes, so ψ_0 (ground state) has no nodes (no points where particle is guaranteed not to be found)
	- − if they give you a wavefunction and ask for its respective potential compute $\frac{\partial^2 \psi}{\partial x^2}$ and compare it to T.I.S.E.
	- Always determine if ψ should be oscillating or decaying by looking at T.I.S.E. → recall it's $-\frac{\hbar^2}{2m}$ $rac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$ so if $E - V > 0$ oscillating; if $E - V < 0$ decaying
	- if $V(x)$ is even: ψ can be either even or odd \rightarrow parity alternates so that ψ_0 is even; ψ_1 is odd, etc... if $\psi(x) = \psi(-x) \rightarrow \langle x \rangle = 0$ if wavefunction is even: always node in the middle
- the energy of quantum system made of only a *rod* connecting two point masses is given by the *rotational* degrees of freedom s.t. : $T = L^2/2I = \hbar^2 n(n+1)/2I$ where $n = l$

5.2 1-particle systems

- S.H.O.: $E_n = \hbar \omega (n + \frac{1}{2}); \psi_n = \frac{1}{\sqrt{n}}$ $\frac{1}{n!}(a^{\dagger})^n \psi_0$ where $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle;$ $a|n\rangle = \sqrt{n}|n\rangle$
	- $-\langle T \rangle = \langle V \rangle = E_n/2 \rightarrow$ more generally for $V(x) = \lambda x^n$: $\langle T \rangle / \langle V \rangle = n/2$
	- 3d: $\psi_N = \psi_{n,x} \psi_{n,y} \psi_{n,z}$ with $E_N = (n_x + n_y + n_z + \frac{3}{2}) \hbar \omega = (N + \frac{3}{2}) \hbar \omega$
	- if there is a wall on one side of S.H.O. potential all even states disappear
	- Recall: classical harmonic oscillator at ground state has energy zero (particle sitting at $x = 0$)
- eigenstates of x: $\psi_a(x) = \delta(x-a)$; of p: $\psi_a(x) = \frac{1}{\hbar\sqrt{2\pi}}e^{\frac{iax}{\hbar}} = \delta(p-a) \rightarrow$ for a particle to have a definite position/momentum they have to be in the respective eigenstates!
- free particles: $\psi(x) = e^{\pm ikx}$; $E = \frac{\hbar^2 k^2}{2m} = \hbar \omega$ with $\omega = \frac{\hbar k^2}{2m}$ 2m
	- can carry any positive energy: cannot exist in a *stationary* state and is not a normalizable solution
	- normalized wave-packet constructed by forming continuous superposition of $\psi_k(x)$ for different values of k
- δ-function potential $(V = -\alpha \delta(x))$: like free particles with BC_s: $\Psi(0^-) = \Psi(0^+); \ \Delta\left(\frac{\partial \psi}{\partial x}\right)_{x=0} = -\frac{2m\alpha}{\hbar^2}\Psi(0)$
	- only 1 bound state with $E < 0 \rightarrow$ if $V = \alpha \delta(x)$: only scattering states since by tunneling it will pass through the barrier if it eventually must come back
- finite square well: since V is even then ψ_0 is even \rightarrow outside well decaying exponentials $\psi \propto e^{-kx}$; inside well oscillating solutions $\propto \sin, \cos$ (as well gets shallower, excited states disappear until there is only 1 bound state)
- particle in a box: free particle with 1 BC: $\psi(0) = \psi(L) = 0 \rightarrow \psi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right); E_n = \frac{n^2 \pi^2 \hbar^2}{2m a^2}$ $_{2ma^2}$
- Bound states: $v_{\min} < E < \min(V_{-\infty}, V_{+\infty}) \rightarrow discrete$ set of E_n and normalizable wavefunctions
- Scattering states: $E > min(V_{-\infty}, V_{+\infty}) \rightarrow$ continuous set of E_n and not normalizable wavefunctions
	- if $E > \max(V_{-\infty}, V_{+\infty})$ 2 states per energy level, otherwise only 1 state per energy level
	- $-e^{ikx}$ for $k > 0$: plane wave moving to the *right*
	- reflection coefficient $R = \frac{|B|^2}{|A|^2}$ $\frac{|B|^2}{|A|^2}$; transmission coefficient $T = \frac{k_R}{k_L}$ $|C|^2$ $\frac{|C|}{|A|^2} \to R + T = 1$
	- if $k_1 = k_2$ there is no reflection!; if $k_1 = 0 \vee k_2 = 0$ there is no transmission
	- when $E < V_{\text{max}}$ particle can still tunnel and be on other side but it has to come back eventually $(R = 1)$
	- given de Broglie wavelength $\lambda = \frac{\hbar}{n}$ $\frac{\hbar}{p}$: $E = \frac{\hbar^2}{2m\lambda}$ with $\lambda = \frac{\hbar}{\sqrt{2mE}} \to$ for particles scattering think of $T = \frac{\hbar^2}{2m}$ $\overline{2m\lambda}$

5.3 Hydrogen atom & 3d-QM

- Bohr model: electrons in circular orbits with quantized values of angular momentum $L = n\hbar \rightarrow$ electrons in a given shell do not radiate
- with radial potential $V(r) \to \Psi = R(r)Y(\theta, \phi)$ where Y are spherical harmonics
	- angular momentum $L = \vec{r} \times \vec{p}$: $[L_x, L_y] = i\hbar L_z$ (with cyclic permutations)
	- $L_z = -i\hbar\frac{\partial}{\partial \phi}$ → $L^2ψ = \hbar^2 l(l+1)ψ$; $L_zψ = \hbar m_lψ$ with $m = \{-l, ..., l\}$
	- if angular part of Ψ is equal to a spherical harmonics then Ψ has definite $L_z = m$ and $L_{\text{tot}} = l$
	- if $\psi \propto \cos(m\phi)$ possible eigenvalues are $\pm m\hbar$ as $\cos(m\phi) = \frac{e^{im\phi} + e^{-im\phi}}{2}$ 2
	- L^2 commutes with all L_i
	- different coordinates commute with each other $\rightarrow [x, y] = [x, z] = [x, p_y] = ... = 0!$
- Hydrogen atom has $V = -\frac{e^2}{4\pi\epsilon}$ $\frac{e^2}{4\pi\epsilon_0 r}$ and $E_n = -\frac{\hbar^2}{2\mu a^2 n^2}$ where $a = \frac{4\pi\epsilon_0 \hbar^2}{\mu e^2}$ is the *Bohr* radius
	- $-E_n \propto \mu$ (reduced mass) \rightarrow if we have *positron* instead of proton then $\mu' = \frac{\mu}{2}$ and hence $E'_0 = \frac{E_0}{2}$ $-E_n \propto 1/n^2$; $E_n \propto Z^2$ (# of protons); $E_n \propto (q_1q_2)^2$ (not \propto (tot-charge)⁴)
- the ground state energy $|E_0 = -13.6$ eV $| \rightarrow$ for hydrogen like atoms the *binding* energy is $E_B = Z^2 E_0$
- for each *n*: $l = \{0, 1, ..., n-1\}$ → ground state has zero angular momentum
- $-l \leq k$ where k is the degree of polynomial \rightarrow *odd* l for *odd* ψ in r (valid for l even as well)
- $-l = 0$ when ψ is *symmetric* on every axis
- if two Ψ_s are *spherically* symmetric they have the same l
- for $l \neq 0 \Psi = 0$ at origin \rightarrow states with $l = 0$ have higher probability to be found near the origin

• in transitions from n_f to n_i : $\Delta E = E_0(1/n_f^2 - 1/n_i^2)$; $\lambda = \frac{hc}{\Delta E}$; $f = \frac{E_0}{h}(1/n_f^2 - 1/n_i^2)$

- if electron bombard from *outside* of atom $n_i \to \infty$
- Lyman series: $n_f = 1$; Bolmer series $n_f = 2$ (when looking for longst wavelength take $n_i \to \infty$)
- Selection rules: transition between states can only happen if:
	- $\Delta m_l = \pm 1$ or 0; $\Delta l = \pm 1$ (\neq 0); $\Delta j \pm 1$ or 0; $\Delta m_s = 0$

assume wavelength of electromagnetic radiation to be large compared to size of atom

- for a given *n* there are n^2 possible combination of *l* and *m*
	- $-2n^2$ possible orbitals (to account for spin up and down); $2(2l + 1)$ possible states in each orbital
	- shells fill in order from *smaller* values of $l: \{s, p, d\} = \{l = 0; l = 1; l = 2\}$
	- for a given spin: the *higher* L the smaller the energy \rightarrow state with *highest* total spin has lowest energy
- fine-structure constant: defines strength of electromagnetic interaction $\alpha = \frac{\mu \hbar}{ac} = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$
- ground state of Helium is *singlet*: spatially symmetric and antisymmetric in spin
- corrections to hydrogen energy in descendent order of magnitude:
	- fine structure ($\sim \alpha^2 E_0$): spin-orbit coupling breaks degeneracy in l but keeps that in m → like Zeeman effect for internal \vec{B} where $\Delta H = \frac{e}{2m}(\vec{L} + 2\vec{S}) \cdot \vec{B}$ with $\frac{e}{2m}$ as the electron classic gyromagnetic ratio
	- $-$ Lamb shift ($\sim \alpha^3 E_0$): splits 2s and 2p with $j = 1/2 \to$ like Stark effect for internal \vec{E} filed where $\Delta H = e \vec{E} \cdot \vec{r}$ (perturbation is *odd* so $1st$ order effect on any *even* state is 0)
	- hyperfine structure ($\sim \frac{m_e}{m_p} \alpha^2 E_0$): spin-spin coupling is given by tendency of spins to anti-align to \vec{B} field (energetically favorable) and splits ground state depending if spins are in *singlet* or *triplet* state \rightarrow triplet needs more energy caused spins are *aligned*; in this transition the famous 21cm line is produced ($\sim 5.10^{-6}$ eV)

5.4 Spin

- intrinsic angular momentum of particle: $S_z \Psi = \hbar m_z \Psi$; $S^2 \Psi = \hbar^2 s(s+1) \Psi$
- $S_{\pm} = S_x + iS_y \rightarrow$ raising/lowering spin operator which preserves s and reduce/increase m_s by one unit of \hbar (remember to normalize them after computations!)
- if two particles have spin s and s' then $s^{\text{tot}} = \{s + s'; s + s' 1; ...; s s'\}, m^{\text{tot}} = m_s + m'_s$
- spin 1/2: $S_i = \frac{\hbar}{2}$ $\frac{\hbar}{2}\sigma_i$ where $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$; $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

– eigenstates in \hat{S}_z basis: $|\uparrow\rangle_x = \frac{1}{\sqrt{x}}$ $\frac{1}{2}\left(\begin{array}{c} 1\ 1 \end{array}\right); \ |\downarrow\rangle_x = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\Big(\begin{array}{c} 1 \ -1 \end{array} \Big); \: \vert \uparrow\rangle_y = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\Big(\begin{array}{c} 1\ i \end{array} \Big);\,|\downarrow\rangle_y=\frac{1}{\sqrt{2}}$ $\frac{1}{2} \begin{pmatrix} 1 \\ -i \end{pmatrix}$

- 2 spin $1/2$ in singlet (antisymmetric) config. with $s = 0$ and triple (symmetric) config. with $s = 1$
- $\vec{J} = \vec{S} + \vec{L}$: all possible values are $\{l + s; l + s 1; ...; l s\}$ \rightarrow highest: parallel & aligned; lowest: antiparallel
- Recall: when you have $S_1 \cdot S_2 / S \cdot L$ remember that: $A_1 \cdot A_2 = \frac{(A_1 + A_2)^2 A_1^2 A_2^2}{2}$
- spectroscopic notation is given by $^{2s+1}L_j$ where $L \in \{S; P; D; F\}$ corresponding respectively to $l = \{0; 1; 2; ...\}$
- spin and spatial operators always *commute*!

5.5 Approximation methods

- Variational principle: choose set of possible wavefunctions in terms of parameter $k \to \min(E_k)$ is upper bound on E_0 where $\langle E_k \rangle = \langle \psi_k | H \psi_k \rangle$
- T.I.P.T.: given $H = H^0 + \lambda H'$ to 1st order $E'_n = \langle \psi_n^0 | H' \psi_n^0 \rangle$; $\psi'_n = \sum_{n \neq m} \langle \psi_n^0 | H' \psi_n^0 \rangle / (E_n^0 E_m^0) \psi_m^0$
	- to 2nd order $E'_n = \sum_{m \neq n} |\langle \psi_n^0 | H' \psi_n^0 \rangle|^2 / (E_n^0 E_m^0)$
	- if states are *degenerate* create matrix W where each element $W_{ij} = \langle \psi_i^0 H' \psi_j^0 \rangle$ eigenvalues of W are E'_{s} corrections; eigenvectors are good linear combination of unperturbed states
- Adiabatic transformation (slowly change H to H'): final energy determined by corresponding eigenstate of Hamiltonian with new parameter
- Sudden change: energy/wavefunction stays constant \Rightarrow for S.H.O. when $\omega \to \alpha \omega$: $\{V, T\} \to \{\alpha^2 V, T(\text{kinetic})\}$

5.6 Many particles systems

- distinguishable particles: $\Psi = \Pi_i \psi_i$ with $H\Psi = E\Psi$ and $E = \sum_i E_i$
- *indistinguishable*: labels are not physical so swapping makes no difference
	- Bosons (symmetric solution): integer spins and as many as you want in one state
	- Fermions (antisymmetric solution): half-integer spins and only 1 per state
	- $-$ Recall the symmetry is given by *spatial* $+spin$ wavefunction
	- when adding *n*-spins, the *highest* spin state $(s = \frac{n}{2})$ is always *symmetric*

6 Special Relativity

6.1 Foundations

- In all inertial reference frames: speed of light is *constant*; laws of physics are *identical*
- for $\gamma = 1/\sqrt{1-\beta^2}$ with $\beta = \frac{v}{c}$ then a S' frame that moves with relative speed v has coordinates: $t' = \gamma(t - \frac{v}{c^2}x);$ $x' = \gamma(x - vt) \rightarrow$ inverse transformation is the same with the + sign for $v \ll c \rightarrow \gamma \approx 1 + \frac{v^2}{2c^2}$ $\frac{v^2}{2c^2}$; $\frac{1}{\gamma} \approx 1 - \frac{v^2}{2c^2}$ $2c^2$
- time dilation: $\Delta t = \gamma \Delta t'$ (to derive this recall to fix x' and not x) \rightarrow time is slower in rest frame so if you are given the time in this frame in the lab more time has passed
- length contraction: $L' = \gamma L$ (to derive this fix t and not t') \rightarrow objects moving are shortened by a factor γ
- object moving relative to another with speed v in x- direction: $u'_x = \frac{u_x + v}{1 + u_x v/c^2}$; $u'_y = \frac{u_y}{\gamma (1 + u_x)}$ $\frac{u_y}{\gamma(1+u_xv/c^2)}$; $u'_z = \frac{u_z}{\gamma(1+u_zv/c^2)}$
- Lorentz transformation for boost along x-axis (easily generalizable to any other axis):
- $p^{\mu} = (E/c; \vec{p})$ with $\vec{p} = \gamma m \vec{v}$ (energy-momentum vector); $J^{\mu} = (c\rho; \vec{J})$ (current density vector); $k^{\mu} = (\omega/c; \vec{k})$ (wave vector)
- $E = T + E_0 = \gamma mc^2$ where $E_0 = mc^2$ (rest energy) and $T = (\gamma 1)mc^2$ (kinetic energy)
- The relativistic product $a \cdot b = a^0b^0 \sum_i^3 a_ib_i$ is *invariant* under Lorentz transformation (equal in all ref. frames)
- the invariant 4-vector displacement $(\Delta x)^2 = (x_B^{\mu} x_A^{\mu})^2$
	- $(\Delta x)^2 > 0$ timelike: there exists an inertial frame where they both appear in the same place $(v < c)$
	- $(\Delta x)^2$ < 0 spacelike: there exists an inertial frame where they both appear in the same time $(v > c)$
	- $-(\Delta x)^2 = 0$ *lightlike*: trajectory going at speed of light $(v = c)$
- relativistic Doppler shift only depends on *relative* velocity between source and observer $v = \beta c$ such that:
	- $-\frac{\lambda'}{\lambda} = \sqrt{\frac{1+\beta}{1+\beta}}$; $f' = \frac{c}{\lambda'} = c\sqrt{\frac{1+\beta}{1+\beta}}f \to +$ or in the numerator respectively tell us that the source is moving away and towards us
	- if speed of light is mentioned we are in the relativistic regime hence think of Doppler shift in these terms
- Lorentz transformations for E, B fields do not change their magnitude in the direction of motion of the particle
- when analyzing a system sometimes easier to take $c = 1$

6.2 Collisions

- $E^2 = \vec{p}^2 c^2 + m^2 c^4$ since $p_{4d}^2 = m^2 c^2$ (4-vector p^{μ} squared) in all inertial frames
- if no ext. force: $\sum_i p_i^{\mu} = \sum_f p_f^{\mu}$ all the 4-energy momentum is conserved (recall this does not mean *invariant*!)
	- tot. momentum and tot. energy: conserved but not invariant
	- kinetic energy neither conserved nor invariant
- if two objects with *same* mass and speed collide against each other, resulting product has no speed and hence only rest energy
- pay careful attention when you change reference frame: if in one frame A moves with v and B is at rest; in the frame where A is at rest B moves with speed $-v$
- if particle moves with $\omega = \omega_0'$ on a circular orbit, then in its frame $\omega_0' = \frac{2\pi}{\Delta t'} \to$ hence in frame at rest $\omega_0 = \frac{\omega_0'}{\gamma}$
- just act *dumb*: just apply the rules of energy-momentum conservation and the relativistic invariants

7 Atomic Physics

7.1 Photons interactions

- chemical potential of photons is $\mu = 0$: they can be created or destroyed in any process (no conservation law!)
- photoelectric effect (low energy): $E_{\text{max}} = \hbar f \Phi$
	- $-$ Φ is work function (energy required to remove an electron from atom); E_{max} is the stopping energy
	- $-f_{\text{thr}} = \frac{\Phi}{\hbar}; T \propto f$ (kinetic prop. to frequency); $P \propto Z^4$ (probability)
- Compton scattering with atomic electron (medium energy): $\Delta \lambda = \frac{h}{mc}(1 \cos \theta)$;
	- $-\Delta E = h\Delta f = \frac{hc}{\Delta\lambda} = mc^2(1 \cos\theta) \rightarrow$ the *wider* angle the more energy *loses* electron
	- Compton wavelength is $\lambda = \frac{h}{mc}$: wavelength of photon whose energy is same as mass of particle
	- $-P \propto Z$ (probability)
- electron-positron pair production (high energy- $E_r > 2m_ec^2$) $\rightarrow \vec{E}$ near nucleus induces the process there is no *reverse* reaction and the probability $P \propto Z^2$
- emission can be *spontaneous* (excited states *always* emit); *stimulated* (the more photons; the more are emitted at same frequency; polarization; phase) \rightarrow amplitude $A^2 \propto (N+1)$ where $N = \#$ photons; $\omega = \frac{(E_2 - E_1)}{\hbar}$
- absorption has amplitude $A^2 \propto N$ where $N = \text{\# photons}; \omega = \frac{(E_2 E_1)}{\hbar}$
- $N = #$ photons= $E_{\text{tot}} / (\frac{hc}{\lambda})$ where $E_{\text{tot}} = P\Delta t \rightarrow$ recall that $p = \frac{h}{\lambda}$ then $\lambda = \frac{h}{mv}$ (in order to go from λ to v when you don't know the frequency)
- Lasers keep lots of electrons in excited state through an optical pump causing *population inversion*
	- spontaneous + stimulated emission from atoms cause cascade of electrons which excite other atoms and cause exponential production of photons all coherent; monochromatic; high intensity
	- $-$ since excited state decays very fast: *metastable* state introduced between the two
	- Diode: medium p-n junction injected with current; Solid state: medium is crystal; Dye: medium is liquid
	- Gas: collisional (transitions from collision btw. atoms); molecular (transitions are vibrational energy levels)
	- free electrons: in ext. \vec{E} field they emit *bremsstrahlung* producing synchotron radiation in a sinusoidal path \rightarrow radiation produced from slowing down of electrons due to nuclear attraction
- Cherenkov radiation: results when charged particle (usually electron) travels through dielectric at speed *faster* than that at which light is propagating in the medium

7.2 Nuclei properties

- masses of atoms $\sim 10^{-31}$ kg ; nuclear size $\sqrt{10^{-15}$ m
- Binding energy: $BE = \sum_i m_i c^2 Mc^2$ (difference between mass of constituents and nucleus itself)
	- much larger than energy holding electrons together (per nucleon \sim a few MeV for most elements)
	- BE per nucleon steadily increases with Z and then decreases for radioactive atoms: $Z = 26$ iron is most stable atom; $Z > 82$ all nuclei will eventually decay
	- $-$ resulting *kinetic* energy given by *difference* in binding energy between initial and final state
- for light elements $\#$ neutrons= $\#$ protons; for *heavier* elements $\#$ neutrons> $\#$ protons
- fission & fusion: *spontaneous* if mass of reactants is *larger* than mass of products
	- enormous energy to overcome (electromagnetic repulsion between protons)
	- generates enormous amount of energy
- energy to remove one electron is *ionization* energy \rightarrow for hydrogenic atoms $E = Z^2 E_0$
	- when last orbital is: full (noble gases) or almost full (alogens) $high$; almost empty (alkali metals) low
	- when they ask for electron charge distribution they mean the *valance* band \rightarrow think of what its corresponding wavefunction looks like and its symmetries
	- energy scale of atomic processes is a few ∼ eV: use it to approximate ionization energies of hydrogenic atoms
- penetration depth is when $\frac{1}{2}m\dot{r}^2 = V(r) = \frac{kZq^2}{r^2}$ where \rightarrow for two atoms with different $Z: V(r) = \frac{kZ_1Z_2q^2}{r^2}$ r^2
- Recall: absorption and emission *lines* are always due to spin *splitting* (nothing to do with nuclear interactions)

7.3 Interaction of charged particles

- cross section A defines effective collision probability: $A = P\frac{V}{N}\frac{1}{\tau}$ where P is prob. of being scattered; $\frac{V}{N}$ is concentration of targets and τ is the thickness
	- can be also thought as area of the shadow (area of sphere from distance from the target)
	- usually just think of data provided and do dimensional analysis
- nuclei target almost *exclusively* atomic electrons \rightarrow energy loss: only through collisions in very small amount (continuous flow as they interact); path shape: *straight lines*; avg. path length: 10^{-5} m
- electrons target both nuclei and electrons \rightarrow energy loss: through collisions/radiation; path shape: *scattered* at various angles; avg. path length: 10^{-3} m
- Decays: Alpha $(\alpha) \rightarrow$ spontaneous decay of 2 neutrons + 2 protons
	- Beta decay (weak-force decay): $\beta^ \Rightarrow$ emits electron and antineutrino; produces proton $(n \to p + e^- + \bar{\nu}_e)$ $\beta^+ \Rightarrow$ emits positron and neutrino; produces neutron $(p \rightarrow n + e^+ + \nu_e)$ neutrino are responsible for broad energy spectrum
	- $-$ gamma (γ) radiation: emission of photons from excited state of nucleus which doesn't change proton/neutron composition
	- Internal conversion (IC): excited nucleus interacts with electron on lower atomic orbital causing its emission \rightarrow produces several x-rays
	- Radioactive: decays randomly independently of how long it's been around (Poisson distribution)

 $N = N_0 e^{-\frac{t}{\tau}}$ with $t_{\frac{1}{2}} = \tau \ln 2$ and $\tau = \text{mean life} \Rightarrow \text{prob. of seeing zero events is } P(0) = e^{-\frac{t}{\tau}}$ if substance can decays in many different ways tot. half time: $1/t_{\frac{1}{2}}^{\text{tot}} = \sum_i 1/t_{\frac{1}{2}}^i$

8 Specialized & Miscellaneous Topics

8.1 The Standard model of particles

- Weak force: W^+ and Z bosons (very heavy $\sim 90x \, m_p$) mediate; Leptons (electron/neutrino) interact with force; \Rightarrow also interact with EM force quark interact also via weak force and can change flavor by emitting or absorbing W -boson decay time $\sim 10^{-8}$ s ; signature is emission of neutrino
- EM force: photons (*massless* bosons with $s = 1$) mediate; decay time $\sim 10^{-17}$ s; signature emission of photon
- Strong force: gluons (massless bosons mediate) \rightarrow decay time $\sim 10^{-23}$ s
	- Hadrons interact with force: bosons (composed by quark-antiquark pairs with $s = \{0, 1\}$) are called mesons; fermions (composed by 3 quarks with $s = \{\frac{1}{2}, \frac{3}{2}\}\)$ are called *baryons*
	- protons (2 quark up-1 quark down); neutron (2 quark down-1 quark up) are called nucleons
	- it involves *color* (corresponding charge of the force) \rightarrow this was able to explain existence of 3 up/down quarks together without violating the Pauli principle
	- blue, green, red: together they make the white which means the charge is 0 and particle is color neutral
	- given confinement property of strong force, free quarks cannot be seen in nature
- matter organized in 3 generations: each of them is *heavier* and less stable $\Rightarrow 2^{\text{nd}}$, 3rd gen. decay to 1st
	- − 1st gen.: up quark $\left(\frac{2}{3}\right)$; down quark $\left(-\frac{1}{3}\right)$; electron; electron neutrino
	- 1 st gen.: charm quark; strange quark; muon (∼ 200x electron); muon neutrino
	- 3 rd gen.: top quark; bottom quark; tau (∼ 20x muon); tau neutrino
- every particle has an *antiparticle* with equal mass and opposite charge \rightarrow photons are their own antiparticles with $s = -1$; Z are their own antiparticles and W^+ has antiparticle W⁻
- to determine which force is responsible for decay one must look at combination of life-time and decay products
- in particle physics anything that can happen will happen unless it's forbidden by a symmetry/ conservation law:
	- baryon and lepton number conserved (recall antiparticles have −1; particles +1)
	- CPT symmetry: charge conjugation $(C) \Rightarrow$ switch particles with antiparticles and change sign of all charges time reversal $(T) \Rightarrow t \rightarrow -t$

parity transformation $(P) \Rightarrow$ reverses orientation in space

- supersymmetry: idea that particles have super-partners with exactly same charge and spin different by $\frac{1}{2}$
- $-$ weak interaction is said to be *maximally* parity-violating
- Higgs boson (125GeV): responsible for giving mass to all elementary particles through mechanism of spontaneous symmetry breaking $(SSB) \rightarrow$ when system moves to a vacuum solution that exhibits the same symmetry which is broken for perturbations around vacuum and preserved for the entire lagrangian
- Recall: a neutron has non-zero *magnetic-dipole* moment but no *electric-dipole* moment \rightarrow if it had it would corresponds to a parity violation
- Recall: a *freely* propagating neutrino is superposition of muon and tau neutrino

8.2 Crystal Structures

- infinite repetitions of identical structural units (*unit cells*)
- Simple cubic: atoms at every *vertex* $(d = a)$; Body-centered cubic (BCC): also atom at the *center* $(d = a\frac{\sqrt{3}}{2})$; Face-centered cubic (FCC): atoms at center of each *face* $(d = a\frac{\sqrt{2}}{2})$
- the smallest pattern is called *primitive* unit cell (not necessarily equal to unit cell)
- BCC is octahedron with half volume of unit cell
- FCC is parallelepiped with quarter volume of unit cell
- Reciprocal (dual) lattice is the Fourier transform of the original lattice (in momentum space)
	- Simple cubic is its own reciprocal lattice with length $d_p = 2\pi/a$
	- BCC and FCC are the dual lattices of each other
	- the dual of an *hexagonal* lattice is another hexagonal lattice *rotated* by 30°

8.3 Astrophysics

• scale factor $a(t)$ measures expansion of universe \rightarrow this causes redshift of photons which is used as measure of time: $a = 1/1 + z$; $\frac{\lambda_0}{\lambda_t} = \frac{a_0}{a_t} \rightarrow z(t) = \frac{\lambda_0}{\lambda_t} - 1$

• Hubble's law (HL):
$$
v = H_0 d
$$

- $-$ due to expansion of space, distant objects seem to *recede* from us (think of *inflating* balloon)
- $-$ given Hubble constant and distance use HL to find receding speed v and compute typical relativistic effect
- if universe expands by factor n ; it cools down in temperature by factor n
- Neutron stars are giant spheres of neutrons (fermions): cannot collapse to be in same position by Pauli exclusion principle

8.4 Error Analysis

- The sample variance is $\sigma_s^2 = \frac{1}{N-1} \sum_i (x_i \bar{x})^2 \rightarrow \text{if } sample: \frac{1}{N-1}$; if whole population: $\frac{1}{N}$ (std. dev. is just σ_s)
- error propagation: $f = aA$: $\sigma_f = a\sigma_A$; $f = A \pm B$: $\sigma_f = \sqrt{\sigma_A^2 + \sigma_B^2}$; $f = AB \vee f = \frac{A}{B}$: $\frac{\sigma_f}{f} = \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2}$
- *independent* errors add in *quadrature* $\sigma_{\text{tot}} = \sqrt{\sigma_1^2 + \sigma_2^2}$
- inverse variance weighting: $x_{\text{avg}} = \sum_i w_i x_i / \sum_i w_i$ where $w_i = 1/\sigma_i$ and $\sigma_{\text{avg}} = 1/\sqrt{\sum_i w_i}$
- Poisson distribution: $P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$ n!
	- $\lambda = \exp$. avg. number of counts in given time t and $P(n)$ is probability to observe n counts in such time t $\rightarrow \sigma \approx \sqrt{N}$ if $N \ggg 1$;
	- $-\sigma_{\text{avg}} = \sqrt{\mu}$ where μ is *mean* value (on tot. count, not on count rate) \Rightarrow after N measurements $\sigma_N = \frac{\sigma_{\text{avg}}}{\sqrt{N}}$
	- if measurements are purely random always use Poisson
	- the time between two Poisson events follows exponential: $P(t) = \lambda e^{-\lambda t}$
	- -90% confidence limit means we want to find rate that gives 0 with probability 0.1 (only 10% of the time): $P(0) = e^{-\lambda t} = 0.1$
- Recall: *accuracy* means how far from true value ; *precision* means how *reproducible* the result is (variance)
- errors can be *systematic* (cannot be reduced); *statistical* (can be reduced by repeating experiments)

9 General Tips for the Exam

- Always be very careful with signs! \rightarrow think about computing unsigned quantity and put sign just at the end.
- if a problem doesn't give you a quantity that you thought you would need: *think!* it's probably not useful (usually it means that some other quantity is conserved)
- Remember to *always* exhaust all limiting cases and dimensional analysis before doing any algebra
	- if you have choices with different dimensions always check them first, it may be enough!
	- look at orders of magnitude to build some intuition
	- use the units in the solutions to figure out if limiting cases can help remove possibilities
- answers that have numerical factors/ random numbers: slow down and work it out carefully!
- if the answer is *wrong*; it's just *wrong*! \rightarrow there are never *typos* in the exam!
- Recall generally *never* is too strong of a word to be favored by ETS: probably that choice is wrong!
- Always *guess*: there is no penalty for wrong answers!

9.1 Useful Math

- log plots: check if one or both axes are in log. scale
	- check plots to see if: axis starts at 1 and not zero; squares that separate points are not equally spaced
	- straight line: on log-log $y = ax^b$; on log-plot $y = c \cdot 10^{bx}$ (here we assumed x-linear)
- Always read axis to verify if they carry *dimensions*
- $e^x \approx 1 + x$; $(1+x)^n \approx 1 + nx$; $\sum_{n=1}^{N} n = \frac{n(n+1)}{2}$ $\frac{n+1}{2}$; $\sum_{n=1} x^n = \frac{1}{1-x}$ for $|x| < 1$
- Fourier transforms: $\hat{f}(\omega) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi} \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt \to$ when asked about its coefficients think of symmetry of function: if even no sin terms (odd!); if odd no cos terms (even!)
- if an event occurs with probability P and I want to make sure it does not happen N times: $\bar{P}_N = (1 P)^N$
- \bullet Don't forget Stoke's theorem: $\int_S \nabla \times \mathscr{U} \cdot d\vec{a} = \int_C \mathscr{U} \cdot d\vec{l}$

9.2 Numbers to memorize

- 13.6eV $(E_0 \text{ of hydrogen})$
- 511keV (electron mass): whenever you see this number think of electrons
- 1.22 (Rayleigh criterion coefficent)
- 2.9 · 10^{-3} m · K (proportionality factor between λ and T)
- 2.7K (CMB temperature)