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1 Classical Mechanics

1.1 Dynamics

• Ftot = ma; F1−2 = F2−1 → for an object not to accelerate in direction x, all forces on x sum up to zero

• think always of limiting cases (e.g. if I know F = 0 at θ = 0 and F = 1 at θ = π
2 probably ∝ sin(θ))

• Fs ≤ µFN (static friction)→ if body just moves the friction force is max and equals kinetic friction (Fmax
s = Fd)

• if two objects are:

– not distinct, they move with the same a (e.g. one on top of the other, even if attached by a massless spring
in between there would be no tension)

– independent, then consider the forces separately (if friction is involved this is always the case)

• projectile motion: x(t) = V0,xt+ x0 (no force acting so V0,x = cost)

– y(t) = y0 + V0,yt− g
2 t

2 (since a = −g)

– Recall! from kinematics v2
f − v2

i = 2a∆s where ∆s = sf − si

• uniform circular motion → a = v2

R ; v = ωr = 2πR
T ; T = 2π

ω ; f = ω
2π = 1

T (don’t forget this! check units)

– F = mv2

R → valid also if not uniform but only when all forces are Radial !

(e.g. pendulum at lowest point Ftot = T −mg = mv2

R )

– if body does not have constant tangential v → a must have also a tangential component

• To compute terminal velocity Fg = Fd (where Fd is the drag force ∝ v)

• ∆E = ∆K + ∆U = ∆WNC where WNC is work done by non conservative forces

– ∆E = 0 if all forces are conservative

– ∆Wtot = ∆WC + ∆WNC = ∆K

– Ue = 1
2k∆x2 (elastic potential energy)

– K = KT +KR where KT = 1
2mv

2 (transational); KR = 1
2Iω

2 (rotational)

• F = ṗ so if Fext = 0; in collisions momentum is conserved (p = mv = const)

– elastic: also conservation of total energy (never assume this unless stated!)

– completely inelastic: both particles stick together post collision

– ∆p = F ·∆t = J (impulse)

– time avg. force: F̄t = 1
T

∫ tf
ti
Fdt = J

T = ∆p
T

– distance avg. force: F̄d = 1
D

∫ df
di
Fdx = ∆W

D = ∆K
D

• if you have two plots of vx and vy vs t → to determine angle check ratio between v0
x and v0

y.

• minimum to complete 1 revolution is v = 0 at peak (use energy conservation and recall that at peak E = U)

• to calculate deflection angle give eq. of motion in x, y we know tan(θ) ≈ dy
dx .

• When changing reference frame think very carefully of where you will be and let intuition guide you

• to know how fast and how far : energy conservation; to know how much time: kinematics

• Rocket motion: mdv
dt + udmdt = F ext

tot (if no ext. forces left side is conserved)

– rocket exhaust velocity u is taken relative to the rocket
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1.2 Rotations

• Rolling without slipping: v = ωR; a = αR; Ktot = Ktr +Krot = γmv2

– point of contact with surface has always zero relative velocity

– friction is the cause but it does no work (with no friction bodies would just slide)

• moment of inertia I =
∫
r2dm =

∫
r2ρdV → Recall! r is distance from axis of rotation (not just origin)

– 1
12Ml2 (rod); 1

2MR2 (disk-cylinder); 2
5MR2 (sphere)

– I = ICM +MR2 (parallel axis theorem)

– if you have multiple objects attached to each other: sum individual Is as computed from the pivot

– center of mass rCM = 1
M

∫
rdm = 1

M

∫
rρdV

• angular momentum L = r× p = Iω (if object is both rotating and translating then Ltot = Ltr + Lrot

– τ = dL
dt = r× F (torque) → if τ ext

tot = 0 angular momentum is conserved

– if tension acts radially L = const, so we can have instances where E changes (tension does work to decrease
radius) and L is conserved

– Ftot = 0 does not imply that L is conserved; it only means atot = 0!

• if reference frame is rotating with constant angular velocity Ω it’s not inertial!

– We must add to Ftot = ma two terms: Fcentrifugal = −mΩ2r (apparent force against centripetal)

– Fcoriolis = −mΩ× v (only exists if object is non-stationary in rotating frame )

• for merry-go arounds and spinning disks problems angular momentum conserved → Li = Iiωi = Ifωf = Lf

1.3 Lagrangians

• L = T − U → most important step is to find coordinates that define movement of body the best

• E − L eqs: d
dt

(
∂L
∂q̇

)
= ∂L

∂q where p = ∂L
∂q̇ (momentum conjugate)

• if ∂L
∂q = 0 → p is conserved.

• H =
∑
i piqi −L = T + U (if U not explicitly dependent on q̇i and t); ṗ = −∂H

∂q ; q̇ = ∂H
∂p

1.4 Orbits

• With central forces L = const so motion confined to a plane with l = mr2φ̇ → L =
1

2
mṙ2 +

l2

2mr2
− U(r)

• Fgr = −GMm
r2 ; U(r) = −GMm

r ; Veff = l2

2mr2 + U(r)

• With two bodies we use the same L with the m→ µ where µ is the reduced mass equal to m1m2

m1+m2

• with multiple gravitational masses Ftot =
∑
i F

gr
i and from there get effective mass!

• Etot > 0 (hyperbola-open); Etot = 0 (parabola-open); Etot < 0 (ellipse-bounded); Etot = Vmin (circle-bounded)

• To find orbit radius set ˙Veff(r) = 0 (stable equilibrium if ¨Veff(r) ≥ 0)

– stable non-circular orbits can only occur for simple harmonic potential and the inverse-square law force

– given F ∝ r−n: for n < 3 a stable circular orbit always exists

– bound orbits do not mean closed : they simply oscillate between two radii

– distance of closest approach is when ṙ = 0 (E = V (r)) → watch out for what a distance is: if Sun is at 1
focus, r 6= a which is the semi-major axis.

– to determine shape of orbit compare its velocity to vesc =
√

2GM
r and vcirc =

√
GM
r
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– for r →∞ Er→∞ = K; at closest approach Ermin
= V and since energy is conserved: Er→∞ = Ermin

• Kepler’s Laws are: (I) planets are on elliptical orbits with sun at 1 focus (assumption M� ≫ mp);
(II) orbits span equal areas in equal times → l

mdt = r2dφ = dA: dA
dt = l

m ;

(III) T = ka
3
2 where a is semi-major axis of orbit and k = 2π√

G(mp+M�
≈ 2π√

GM�

1.5 Springs

• Fe = −kx → if springs connected ktot =
∑
i ki (in parallel); 1/ktot =

∑
i 1/ki (in series)

• for spring problems always (I) try limit cases first (dimensional analysis/symmetry); (II) try conservation of
energy and (III) as a last resort try to solve differential eq.

• S.H.0.: ω = k
m ; damped oscillators have additional damping term Fdamp = −bẋ s.t.: mẍ+ bẋ+ kx = 0 .

– underdamped: exponentially decaying oscillations → ω2
1 = ω2

0 − β2 with ω2
0 = k/m; β = b/2m;

– overdamped: no oscillation, just exponential decay

• driven Oscillator: guess complex solution Aeiωt where ω is driven frequency → A ∝ 1/
√

(ω2
0 − ω2)2 + 4β2ω2

– Amax at ωR =
√
ω2

0 − 2β2 (resonance); with no damping A ∝ 1/|ω2
0 − ω2|

• For more than a spring, consider matrix of eqs. of motions from lagrangian analysis:
∑
k(Ajkqk +mjkq̈k) = 0

– guess qk = ake
iωt → solve det(Ajk −mjkω

2) = 0 (diagonalize the matrix) which gives the n frequencies ωi
at which system oscillates

– # of normal ωi = # of independent variables needed to describe system

– always ask yourself what are the simplest ways for a system to oscillate → symmetric motion always lower
frequency than antisymmetric motion

– lowest collective motion has ω2 = keff/meff ; highest motion is all out of phase with ω =
∑
i ωi

• anything can be analyzed as an oscillation if we perturb system only slightly from its eq. of motion

• Recall for θ ≪ 1 → [sin θ, cos θ, tan θ] ≈ [θ, 1− θ2/2, θ].

1.6 Fluid Mechanics

• P = dF
dA (pressure) → F =

∫
PdA where dA is the cross-sectional area

• given fluid at rest, pressure as function of height is p− p0− = ρgh (height of fluid on top of reference point P)

• equipressure means at given height pressure is the same!

• Bernoulli’s principle v2

2 + gz + p
ρ = const! (kind of conservation of energy eq.)

• fluid going through sectional area Ai with velocity vi is conserved : ρ∆tAivi = const⇒ Aivi is conserved if ρ is
uniform and equal time

• Boyant force: Fb = ρV g (↑ upward direction) where ρ is the density of space where object is confined and V is
the volume of the object:

– if an object galleggia Fg = Fb

– to lift a body from water the force required is Flift = Fg − Fb
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2 Electricity & Magnetism

2.1 Electrostatics

• ∇ · ~E = ρ/ε0; ∇× ~E = 0 → ~E = −∇V with V = −
∫ b
a
~E · d~l (defined relative to some location)

– V is usually set to zero at infinity; both ~E and V are additive

– ∇2V = −ρ/ε0: V (r) = 1
4πε0

∫ ρ(r)
|r−r′|d

3r′ → from here compute ~E

– ~F = q ~E: per unit volume (ρ ~E); area (σ ~E)

– to compute ρ use ∇ · ~E = ρ/ε0 (specifically if ~E is given in vector form)

• Gauss’s law:

∮
S

~E(r) · d~s =
Qenc

ε0
⇒ use for spherical (∼ 1

r2 ); cylindrical (∼ 1
r ); planar (∼ const) symmetries

• Recall: always start by symmetry considerations to limit computation:

– point charges: just sum up potential from single configurations and take derivative to find ~E → if point
charges vertices of polygon, then field and force at the center is zero

– infinite plane with surface charge σ: ~E = σ
2ε0
n̂; infinite line/cylinder with charge per length λ: ~E = λ

2πε0r
r̂

• V is always continuous, derivatives of V too except at surface charges→ BCs: E
‖
out − E

‖
in = 0;E⊥out − E⊥in =

σ

ε0

• image method (to determine V ): place image charge at point given by reflection about plane

– with plane: on opposite side at same distance

– charges add up to the right amount in each region where we compute potential → Recall to compute ~E
field directly from configuration (do not take derivative of potential)

– Recall: force on a charge is the same as that given by image charges → work is only done on real charges
(no energy cost to move image charges)

• Conductors: inside ~E = 0;ρ = 0; V = const→ induce opposite charge and leave all charges at surface σ = −ε0 ∂V∂n
– resistivity: ρ = ρ0(1 + α∆T ) ∝ ∆T ; conductivity: σ ∝ 1/∆T (for T ↑ → ∞)

• Semiconductors: decreasing electrical resistivity with increasing temperature: ρ ↓ continuously

– current conduction via mobile electrons which are forbidden from being excited until they overcome band-gap

– for T ↑ electrons overcome band-gap and are free from constraints of exclusion principle

– doped materials: excess of holes: p−type; of electrons: n−type

– Diode is p− n junction where I flows only if Vapp > Vbias and is independent of Vapp!
→ Recall: a diode blocks the current in one direction and allows it in the other!

• W = 1
2

∑
i qiV (ri) = 1

2

∫
ρ(r)V (r)d3r: work required to put together n charges (negative!)

→ sometimes convenient to think of work to move charges as W = q∆V = q(Vf − Vi)

• Energy stored in electric field is UE = ε
2

∫
|E|2d3r→ to find the work done to obtain a configuration W = U1

E−U2
E

(always take difference and then perform integral!)

• Recall: superposition principle applies to ~F , ~E, V,W

• Capacitors: Q = CV where capacitance C depends on geometry of problem (for parallel plate capacitor C = ε0A
d )

– UC = 1
2
Q2

C = 1
2CV

2 (energy stored);

– if two conductors touch, they become equipotential and if C1 = C2 = C then charge equally distributes

– if capacitors are connected s.t. opposite plates face each other: Qtot = Q1 −Q2 6= Q1 +Q2

• total flux given electric field is always by Gauss’s Law Qtot/ε0 then think how many field lines hit the plane
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2.2 Magnetostatics

• ∇ · ~B = 0 (no magnetic monopoles); ∇× ~B = µ0
~J → ~B = ∇× ~A

– ~B always circles around currents; ~B → 0 far away from current sources

– ~F = q~v × ~B; on current I: d~F = Id~l × ~B s.t. ~F1,2 = LI2 × ~B1 (force on 2 by 1)

– for cross products: cylindrical ẑ × r̂ = φ̂ ; spherical: φ̂× r̂ = θ̂ ⇒ other relations by cyclic permutations

– d ~K = Id~w (surface current); d ~J = IdA (volume current)

– ~J = σ ~E = nqv and σ conductivity; v drift velocity; n charge density (concentration)

– ~B do no work since ~F ⊥ ~v (can only change direction of motion, not magnitude of velocity)

→ energy still stored in ~B field: UB = 1
2µ0

∫
|B|2d3r

• Ampere’s law:

∮
C

~B · d~l = µ0Iencl ⇒ use if there are symmetries: plane (planar) ∼ const; B ‖ to the plane

– circumferential: straight wire µ0I
2πr ∼

1
r ; toroid µ0NI

2πr ∼
1
r (in) and 0 (out);

– solenoid ∼ const (in) and 0 (out) → ~B = µ0nIẑ where N = # turns and I is calculated per unit length

• when symmetries cannot help: ~B(r) = µ0I
4π

∫
d~l×r̂′
r2 ; r where field is evaluated; r′ vector from line element to r

• Recall: usually I ‖ d~l and I ‖ ~A → BCs: B
‖
out −B

‖
in = µ0

~K × n̂;B⊥out −B⊥in = 0

• cyclotron motion: qvB = mv2

R → ω = qB
m (freq.); R = mv

qB (radius)

• diamagnetic materials have lower ~B which does not change direction (opposite of ferromagnetic)

• Superconductors: outside surface ~B⊥ = 0 ( ~B only tangential !)

– when cooled below certain temperature, materials have 0 resistance → explained by presence of cooper
pairs: 2 electrons weekly bound with energy below Fermi energy s.t. favorable to pair up

2.3 Electrodynamics

• ∇ × ~E = −∂B∂t ⇒
∮
C
~E · d~l = −∂ΦB

∂t = E (electromotive force): minus sign because by energy conservation
induced currents must oppose magnetic flux (currents always reduced by induced E !)

• ∇× ~B = µ0
~J + µ0ε0

∂ ~E
∂t ⇒

∮
S
~B · d~a = µ0Ienc + µ0ε0

∂ΦE
∂t (e.g. charging capacitor involves displacement current)

• Recall when computing fluxes always use cross-sectional area ⇒ multiply by N turns when necessary

• mutual inductance M : Φ1 = M1,2I2; Φ2 = M1,2I1; ⇒ Φ2/I1 = Φ1/I2 (depends purely on geometry)

• self inductance L: Φ = LI ; E = −LdIdt (depends on geometry) ⇒ to evaluate: compute flux; plug in Lenz’s law

as capacitors, inductors store energy UL = 1
2LI

2 ⇒ for solenoid L/l = µ0N
2A

• Recall: if a wire is being wound around: magnetic flux is changing!

• electric dipoles: ~p =
∑
i qi

~di =
∫
~rρ(r)d3~r ⇒ V (r) = ~p·r̂

4πε0r2
∼ 1

r2 hence ~E ∼ 1
r3

tend to align with ~E field: ~N = ~p× ~E (torque); U = −~p · ~E (where F = −∇U)

• magnetic dipoles ~m = I ~A (vector pointing normal to surface) ⇒ ~B = m0

4πr3 (2 cos θr̂ + sin θθ̂) ∼ 1
r3

~N = ~m× ~B (torque); U = −~m · ~B (where F = −∇U)⇒ field far from current loop equals that of a dipole

• Multipole expansion: the nth term ∝ 1/rn+1 for n = {0, 1, 2, ...}

– in ~E field with net charge: monopole term dominates; in ~B field/ in ~E with Qtot = 0 dipole term dominates
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• in matter polarization P (electric dipole moment per unit vol.) causes bound charges: σb = P · n̂; ρb = −∇ ·P
→ to compute field just apply usual Gauss’s law and other rules using these new charges

– P = ε0χe ~E; ~D = ε ~E with ε = ε0(1 + χe) = ε0κ ⇒ new BCs: ε1E
⊥
1 − ε2E⊥2 = σf

– For simplest configurations ~E transform by ε0 → ε: parallel plate capacitor C = εA
d = κ ε0Ad

– if dielectric change ⊥ ~E: ~D uniquely determined - ~E changes; ‖ ~E: ~E uniquely determined - ~D changes

• in matter magnetization M (magnetic dipole moment per unit vol.) causes bound current: ~Kb = M × n̂;
~Jb = ∇×M → to compute field just apply usual Ampere’s law and other rules using these new currents

M = χm
µ
~B; ~H =

~B
µ

• Recall: if ~E ‖ ~B since ~v ‖ ~E then ~v ‖ ~B and hence ~Fmag = 0

• Recall: if charge oscillates back and forth, the field should be still maximized near particle

2.4 E-M waves & Radiation

• in vacuum plane waves with speed c = 1/
√
ε0µ0: Ẽ(~r) = Ẽ0e

i(~k·~r−wt)n̂; B̃(~r) = (k̂ × Ẽ)/c

• the pointing vector: ~S = 1
µ0

( ~E × ~B) → energy per unit area, per unit time/Power per unit area

– P =
∮
S
~S · ~a (Power); I = 〈S〉 = 1

2cε0E
2
0 (intensity)

• BCs at x-z plane: (i) ε1(Ẽ0,I + Ẽ0,R)z = ε2(Ẽ0,T )z; (ii) (B̃0,I + B̃0,R)z = (B̃0,T )z;

(iii) (Ẽ0,I + Ẽ0,R)xy = (Ẽ0,T )xy; (iv) 1
µ1

(B̃0,I + B̃0,R)xy = 1
µ2

(B̃0,T )xy

• BR reflected always opposite sign w.r.t. BT → change also sign of k if wave goes opposite way

• perfect conductor : ET = 0 → E0,I = −E0,R (all fields to the left cancel; B fields same direction, sum up)

• accelerating electric charge (for v ≪ c) radiates s.t. P =
µ0q

2a2

6πc
∝ q2a2 ; a could depend on m (since a = F

m ):

P ∝ 1
m2

• oscillating dipole with moment p = p0 cos(ωt) radiates s.t. 〈S〉 =
(
µ0p

2
0ω

4

12πc

)
sin2 θ
r2 ∝ p20ω

2

r2 sin2 θ → no radiation

along dipole axis (recall: monopoles do not radiate!)

– 〈P 〉E =
µ0p

2
oω

4

12πc ∝ p
2
0ω

4; 〈P 〉B =
µ0m

2
oω

4

12πc3 ∝
m2

0ω
4

c3 ≪ 〈P 〉E (electric radiation dominates)

– a sphere of total charge Q that expands and contracts has total radiated power equal to zero

2.5 Circuits

• VR = IR; VC = Q
C ; VL = −LdIdt → energy stored in capacitors (UC = 1

2CV
2) and inductors (UL = 1

2LI
2);

dissipated in resistors (Pdis = IV = I2R) where R = ρl/A ⇒ to relate it to force recall ~F · ~v = P

• if you have n resistors with equal R ⇒ in series: voltage multiplicator by n; in parallel : voltage divider by n

• loop rule:
∑
i Vi = 0; junction rule: Iin = Iout ⇒ Thevenin equivalent: any combination of voltage source/

currents/ resistors is equivalent to 1 voltage source + 1 resistor

• For AC circuits use Impedance: ZR = R; ZC = 1
iωC ; ZL = iωL with Ztot = |

∑
i Zi|

– RC and RL circ.: τRC = RC (discharging const.); τRL = L
R (response time) ⇒ time to drop V by 1/e

– RLC circ.: ωres = 1√
LC

where 〈P 〉 = I2
rmsR with Irms =

√
2

2 I (like damped. harmonic oscillator)

– LC circ.: ω = 1√
LC

(like simple harmonic oscillator)

– resonance: frequency where imaginary part of impedance Z goes to zero!

– for ω →∞ capacitors act like short circuit; inductors like open circuit; for ω → 0 viceversa
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• LP-filter: RC circ. with C on output (capacitor is low/ connected to the ground)
∣∣∣V0

Vi

∣∣∣ = 1/
√

1 + (RCω)2

• HP-filter: RC circ. with R on output (resistor is low/ connected to the ground)
∣∣∣V0

Vi

∣∣∣ = RCω/
√

1 + (RCω)2;

RL circ. with L on output (inductor is low/ connected to the ground)
∣∣∣V0

Vi

∣∣∣ = R/[ωL
√

1 + (R/ωL)2];

generally for filters: compute impedance and check limit cases ω → {0; +∞}

• sudden switch can be thought as ultra-high frequency event (ω = ∞ at t = 0) which gradually relax to small
frequencies s.t. ω = 0 at t =∞ ⇒ when switch is closed VL is max since it’s ∝ dI

dt

• Recall: never forget internal resistance, if it’s mentioned it’s important!

• to maximize power transmitted one needs impedance of source to be equal to that of output

• OP-AMP: gain ↑; input impedance ↑; output impedance ↓ ⇒ use feedback circuit to control gain

• transformers consist of two coils with Vs/Ns = Vp/Np, hence by energy cons. IpVp = IsVs ⇒ Ip = IsNs/Np

• The hall effect: used to determine sign of charge carriers according to RH = − 1
nec

• Logic gates: elements take on discrete values ⇒ AND: true only if both A and B are true

– OR: always true except if both A and B are false; NOT: returns opposite of A (Ā)

– NAND; NOR: just usual AND; OR for inverted inputs ⇒ A ·B = Ā+ B̄; A+B = Ā · B̄
– a series of NAND or any other logical gate can be combined to create any sequence of logical gates
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3 Waves

3.1 Foundations

• ∂2f
∂t2 = v2 ∂

2f
∂x2 → for any f the related function f(x± vt) solves equation

– linear solutions: if f , g solves equation also Af +Bg does!

– wave travelling to the right : − sign (x− vt); left : + sign (x+ vt)

– standing wave: f(x, t) = A(x)B(t) → shape oscillates in time but doesn’t go anywhere; can be rewritten as
sum of left and right moving wave

– Intensity: I ∼ A2 (energy carried); λ = 2π/k; → de-coupled waves add their intensities separately

– T = 2π/ω; ω = 2πf ⇒ k is wave-vector whose direction tells us where the wave propagates

• dispersion relation is ω(k): phase velocity vp = w
k (velocity of individual crest)

– group velocity vg = dω
dk (speed of wave packet/ at which information travel; must be less than c)

vp can be greater than vg and even than c!

– classically ω(k) = vk; quantum particles ω(k) = ~k2
2m

• wave examples: string : v =
√

T
µ with T tension and µ mass density; sound cs = κ

ρ with κ measure of stiffness

and ρ as density: ratio of change in pressure to fractional volume compressed

• in medium with index of refraction n: v1 = v0/n; λ1 = λ0/n; f1 = f0 (freq. is const)
minimum speed of particle in medium is just v = vi/n

• Polarization gives direction of wave⇒ longitudinally pol. wave: same direction as displacement of wave medium

– polarized in direction n̂0: I = I cos2 θ with n̂ · n̂0 = cos θ

– two polarizers at π
2 no light transmitted; two at π

2 and one in the middle at π
4 : output is not zero!

– if unpolarized (light in every direction) light shines on polarizer: I = 〈I〉 = I0/2

– Brewster angle θB = arctan
(
n1

n2

)
: light reflected off polarized ⊥ to plane formed by incident ray and normal

to surface ⇒ if light polarized ‖ to incident plane: no reflection at all

• Doppler effect: f =
(v + vr
v − vs

)
f0 where vr of receiver and vs of source

– if source moving away : vs negative, f ↓; towards: vs positive, f ↑
– formula is only valid if receiver and source moving directly towards or away from each other

– f is constant : the falling freq. sound only given by varying angle

– Be very careful with velocity of receiver and source: do not confuse with velocity of medium v

• Pipes: open end is a node (no change in pressure!); closed end is anti-node

– lowest mode approach: open pipe → λ
2 so λmax = 2L; closed pipe → λ

4 so λmax = 4L
→ fundamental harmonics are respectively fm = {mv2L ,

mv
4L }

– fbeat = f1−f2 → if I choose f0 to be fundamental harmonics then the nth harmonic has frequency fn = nf0

• wavelengths orders of magnitude: radio (mm to km); visible (400nm to 700nm); x-rays (0.01nm to 10nm)

3.2 Interference patterns

• general interference pattern: ∆δ = 2mπ (constructive); ∆δ = (2m+ 1)π (destructive) where ∆δ = k∆x

• Double slit (separation d): d sin θ = mλ (constructive); d sin θ = (m+ 1/2)λ (destructive)

# of fringes given angular aperture α = 2θ ⇒ # = 2m!

• Single slit (large a): a sin θ = mλ (minima) ⇒ first minima gives width of central maximum: 2L tan θ ≈ 2Lθ

to find sharpest image minimize first diffraction pattern according to eq. sin θ ≈ θ = λ
d
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• Optical path length ⇒ wave travels different distances in different media: ∆x = nd where ∆δ = k∆x

– for n→∞ slows down so much that goes over infinitely many cycles

– in thin film of thickness d there are two sources of phase-shift:
(1) going from medium n1 to n2: ∆δ = {0 if n2 < n1 ,π if n2 > n1} (corresponds to ∆λ = {0, λ2 })
(2) ∆x = 2dn2 (path length) ⇒ in tot. if n2 > n1 constructive inter.: 2dn2 = (m+ 1/2)λ

• Bragg diffr.: d sin θ = nλ
2 (constructive) → from crystal lattice modelled as set of ‖ planes at distance d apart

• given number of slits per unit length constructive interference appear at L
N sin θ = mλ

• Rayleigh criterion for circular apertures: first diffraction minimum at D sin θ = 1.22λ

– minimum angle for two images to be resolved: θ ≈ 1.22λ
D → if they give you the frequency, recall that to get

the wavelength it’s simply λf = c

– Rayleigh scattering (for λ≫ a): I ∝ I0λ−4a6 ⇒ think of this formula when particle scattering is mentioned

• Interferometer: a fringe shift occurs every d
λ hence # of fringes is m = 2d

λ

• interference is produced if sources are coherent : 500Hz already much greater than max-freq. of human eye

• Resolving power of spectrometer is ∆λ/λ

3.3 Optics

• Geometric optics (for λ≪ a): n1 sin θI = n2 sin θT ; θI = θR
total internal reflection is when sin θT > 1 or n1

n2
sin θI > 1

• be always careful: angles w.r.t. the horizon are different than angles w.r.t. normal

• plane mirrors: p = −i with p object; i image → if i < 0 image to the left of mirror

• spherical mirrors:
1

p
+

1

i
=

1

f
with f as the distance to focus where all parallel rays converge

– m = − i
p (magnification) → sing determines orientation: + upright ; − inverted

– for idealized spheres f = R
2 (+ if center of curvature on same side of incoming light; − viceversa)

– to draw image: 1 light ray ‖ and 1 going through focus

• Lenses are converging : 2 convex surfaces, f+; diverging : 2 concave surfaces, f−

–
1

p
+

1

i
=

1

f
→ Recall: distances are + when on the other side of lens and − if they return back

– in terms of radii of of curvature of two surfaces of lens: f = (n− 1)
(

1
R1
− 1

R2

)
– when you have multiple lenses treat them independently

– magnification of telescope made of objective and eye-piece is M = fo
fe

– to draw image for converging lens: rays through both focuses; diverging lens: 1 ray through focus and 1
through center ⇒ in general when rays converge image is real ; when they diverge is virtual !
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4 Thermo & Stat-Mech

4.1 Microscopic Ensembles

• Canonical distribution → an ensemble in contact with heat reservoir (T ,V and # particles are fixed)

– Pr = e−βEr

Z where Z =
∑
r e
−βEr (partition function); β = 1

kBT

– ȳ = 1
Z

∑
r yre

−βEr → Ē = −∂ lnZ
∂β ; ∆̄E

2
= −∂Ē∂β = −∂

2 lnZ
∂β2

– dW = X̄dx where X̄ = −∂Ē∂x = 1
β
∂Z
∂x → implies p̄ = P = 1

β
∂ lnZ
∂V

– If there are N subsystems Ztot = ΠiZi → if systems of indistinguishable particles Ztot = 1
N !ΠiZi

– I.M.G.: Zi = V0

~3

∫∞
−∞ e−

βp2

2m d3p = V0

(
2πm
~β

) 3
2 ∝ β− 3

2

– relativistic particles: Zi = V0

~3

∫∞
−∞ e−βpc4πp2dp = 8πV0

(~βc)3 ∝ β
−3

• microcanonical ensemple: fixed energy and temperature

• if we allow particles to be exchanged: Z =
∑

APS e
−βEr−αNr (gran partition function); α = −µβ

– µ is the chemical potential (if µA = µB no particle flow) → ; N̄ = −∂ ln Z
∂α = 1

β
∂ ln Z
∂µ

• Entropy is a measure of uncertainty on state of system: S = kB ln Ω where Ω = # of microstates

– S = −kB
∑
i pi ln pi = ∂

∂T (kBT lnZ)

– at fixed temperature: S = kB(lnZ + βĒ); for I.M.G.: S = NkB ln
(
V T

3
2

N

)
+ const

– if types of particles are the same sum up individual entropies otherwise use the usual formula S = kB ln Ω

• Recall: ln(n!) ≈ n(ln(n)− 1);
(

N
M

)
= N !

M !(N−M)! (ways of separating a group of M people from a pool of N)

4.2 Thermodynamics

• Equipartition theorem: each d.o.f. (quadratic term) in Hamiltonian contributes 1
2kBT to internal energy

# of transitional d.o.f.: # of dimensions;
# of rotational d.o.f.: # of dimensions -1 (linear mol.); # of dimensions (non-linear mol.)
# of vibrational d.o.f.: 3N − 6 for N > 2 (linear mol.) → the only to depend on the # of particles

– vibrational energies of diatomic molecule are approximately those of harmonic oscillator (kBT ≈ ~ω = hf)
→ these modes only become frozen at temperatures 1 order of magnitude larger than room-temp (∼ 103K)

– generally the higher T the more modes are unfrozen
for low T : only transitional (atoms as rigid dumbells)
rotational freeze at T ∼ 1K (they are free at room temp.)
for T ≫ 1 all modes unlock (atoms become springy)

• Laws of thermodynamics: at equilibrium TA = TB (most probable system) with T = 1/ δSδE → S is maximized

– ∆U = Q−W → dE = dQ− dW where dQ = TdS; W = X̄αdxα = PdV

– ∆S ≥
∫
dQ
T where dQ

T = Srev (reversible process) → ∆Suniv ≥ 0

– for reversible processes ∆Suniv = 0 → note on single interactions we can have ∆S < 0.

– Quasi-static (QS) processes correspond to infinitely slowly as a succession of thermodynamics equilibriums

– S(T → 0) = 0 (not always if ground state is degenerate)

– A cooler body can never just heat up a hotter body

• Heat capacities: cy = T
(
dS
dT

)
y

=
(
dQ
dT

)
y

hence → cv =
(
dQ
dT

)
V

=
(
dE
dT

)
V

; cp =
(
dQ
dT

)
P

– for conductors (metals) cv ∝ T 3 → if material is superconductor cv jumps up and then goes back down

– for relativistic gases cv = 3kBT
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– Recall: spin always plays a role in determining the specific heat of an object

• Enthalpy: H = E + PV (dH = TdS + V dP ); Free energy: F = E − TS (dF = −SdT − PdV );
Gibbs free energy: G = F + PV (dG = −SdT + V dP )

– Maxwell relations can be found by equating the second derivative of each potential in terms of their param-
eters (think of the parameters as partial derivatives of one of the functions)

– when # of particles is not fixed, chemical potential becomes useful µ =
(
∂F
∂N

)
T ;V

=
(
∂E
∂N

)
S;V

– T =
(
∂U
∂S

)
V

; P =
(
∂U
∂V

)
S
→
(
∂P
∂S

)
V

= −
(
∂T
∂V

)
S

• Ideal Gases: Ω(E, V ) = BV NE
3N
2 ; p̄V = PV = nRT = NkBT

– E = 3
2NkBT ; cp = cv +NkB ; cv = #d.o.f.

2 NkB ; γ = cv
cp
→ γ = 5

3 (mono-atomic); γ = 7
5 (di-atomic);

– Isothermal (T = const): ∆E = 0; ∆Q = ∆W = nRT ln
Vf
Vi

; ∆S = nR ln
Vf
Vi
→ during isothermal exp. F ↓

– Isocoric (V = const):∆E = ∆Q = cv∆T ; ∆W = 0; ∆S = cv ln
Tf
Ti

– Isobaric (P = const):∆E = cv∆T ; ∆Q = cp∆T ; ∆W = P∆V ; ∆S = cp ln
Tf
Ti

– Adiabatic-isentropic (Qin = Qout = 0): ∆E = −∆W = cv∆T ; ∆S = ∆Q = 0
PV γ = const; V γ−1T = const

– given same fractional increases ∆Sp > ∆Sv > ∆ST > ∆Sadiabatic

– we can also write ∆Q = cm∆T where c is the specific heat of a material (cwater = 418JK−1g−1)

• Free Expansion: Q = 0 (system adiabatically isolated); W = 0 (no work in the process) → ∆E = 0

– if I.G. since E ∝ T : ∆T = 0; if not I.G. for V2 > V1: T2 < T1 (temperature decreases)

– This is not QS/reversible process ∆S 6= 0 = nR ln
Vf
Vi
→ ∆SFE = ∆ST so it corresponds to minimum

entropy change for expansion (recall adiabatic does not mean ∆S = 0)

• Heat engines: ∆Etot = 0 (cycle); ∆W = ∆Qin −∆Qout =
∫
TdS

– η = ∆W
∆Qin

= 1− ∆Qout

∆Qin
(efficency)

– for reversible processes ∆Suniverse = 0 so ∆Smachine = ∆Q
T which implies η = 1− Tout

Tin

– Cornout Cycle: 2 adiabatic; 2 isothermal (rectangle in S-T space)

– clockwise paths (expansions) in P-V;S-T planes do positive work

• Van der Walls gases:
(
P + N2a

V 2

)
(V −Nb) = NkBT → a, b respectively measure attraction, size of particles

• Recall: if gases are identical and one removes partition nothing changes → ∆S = 0 (no additional states)

• Never assume the gas is monotone unless it explicitly says it!

4.3 Quantum Statistics

• Average energy: 〈ε〉 =
∫∞

0
εn̄(ε)ρεdε; Average # of particles: 〈N〉 =

∫∞
0
n̄(ε)ρεdε

• to derive average occupation number at energy level r, fix energy and think in terms of number of particles

• ρ is the density of states with ρk = gV k2

2π2 and g = # degeneracies (careful with what this number is)

→ ρε = ρk

(
dε
dk

)−1

with ε = pc = ~ck (relativistic) and ε = ~2k2

2m (classical)

• Bosons are indistinguishable and as many as you want in 1 state

– at energy εr: Z (εr) =
∑
i e
−β(εr−µ)·i) with i = # particles; occupation n̄BE(εr) = 1/(eβ(εr−µ) − 1)

– for T → 0 collection of bosons in ground state approaches infinity

• Fermions are indistinguishable and at most 1 per state
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– at energy εr: Z (εr) = 1 + e−β(εr−µ)·); occupation n̄FD(εr) = 1/(eβ(εr−µ) + 1)

– for T → 0 n̄FD(εr) = {0 if εr > µ; 1 if εr < µ; 1
2 if εr = µ = εF (Fermi energy)}

– when there are only two states think of Fermi Dirac statistics

• free electrons only behave kinematically and by Pauli exclusion principle: EF =
~2k2F
2m with kF = (3ρ2π2)

1
3

ρ = electron density; n = N
V → kF ∝ n

1
3 ; EF ∝ n

2
3

• velocity in materials is always vind =
√

αRT
m : in I.G. for ind = {rms,mode, avg} α = {3, 2, 8}

• Recall: if Maxwell Boltzmann description ~vavg = 0 (including direction)

• Debeye & Einstein models assumed 3N oscillator model→ Einstein: all with same frequency; Debeye: spectrum
of frequencies

• Power emitted by blackbody is P = σεAT 4 ∝ T 4

– I = 2~ω3

c2 ·
1

e
~ω
kBT −1

∝ ω3 (intensity)

– The peak of the spectrum is at λmax = 2.9 · 10−3K ·m/T ∝ 1/T
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5 Quantum Mechanics

5.1 Foundations

• − ~2

2m
∂2ψ
∂x2 + V (x)ψ = i~∂ψ∂t → separation of variables: t) ∂ψ

∂t = −iE~ ψ; x) Hψ = Eψ (T.I.S.E.)

– general solution Ψ(x, t) =
∑
n cnψne

−Ent/~ where cn = 〈ψn|ψ〉 and Pn = |cn|2
〈ψn|ψm〉 = δmn (eigenfunctions are orthogonal)

– the observed quantities are the eigenvalues qn; while the expected value 〈Q〉 =
∑
n qn|cn|2

– Hamiltonian eigenstates are stationary : expectation values are constant : d〈Q̂〉
dt = 0; [Q̂;H] = 0

→ if Ψ(x, 0) = Ψn(x) (initial state= stationary); the probability of getting En at any other time is 1

– superposition of eigenstates are not stationary and introduce a factor ∝ sin θ/ cos θ where θ ∝ (E1−E2)t/~
→ Recall:the energy eigenvalues and relative probabilities are still constant in time

– Ψ needs to be normalizable s.t.
∫∞
−∞ |Ψ||

2dx = 1 → recall Ψ is just a wavefunction; |Ψ|2 is the probability

distribution (e.g.
∫ b
a
|Ψ|2dx is probability to find particle in x ∈ (a, b) )

– if problem doesn’t explicitly state Ψ is normalized, you should do it yourself before computing anything else

– Ψ has dimensions d/2 where d = # spatial dimensions

• Hermitian operators: 〈f |Q̂|f〉 = 〈Q̂f |f〉 as Q̂ = Q̂†→ Hermitian conjugate is transpose + conjugate: A† = (AT )∗

– Q̂ψn = qψn where q is real (eigenvalues must be real and represent observables)

– any operator involving 1 derivative without the factor of i, it cannot be hermitian

– total energy operator is E = i~ ∂
∂t

• Recall: the expect. value of an imaginary number is zero (not observable)→ if Ψ real and Q̂ imaginary: 〈Q̂〉 = 0

• Commutator [A,B] = AB− BA → when evaluating them always apply them to a wavefunction

– [AB, C] = A[B,C]− [A,C]B; [A;B] = −[B;A]

– if commutator is zero, operators are compatible and constitute complete set of simultaneous eigenfunctions
ψn

– if operator Ô commutes with Hamiltonian, the corresponding observable is conserved

– uncertainty principle: σxσp ≥ ~
2 since [x, p] = i~ where p = i~ ∂

∂x (minimum corresponds to Gaussian
wave-packet)

– σtσE ≥ ~
2 → to make computations approximate ∆x∆p ≈ ~; ∆t∆E ≈ ~

– when they ask you for a lower bound (like minimum radius) think of uncertainty principle

• the wavefunction ψ is always continuous; ∂ψ
∂x is only discontinuous where V (x)→ ±∞

– ψn has n nodes, so ψ0 (ground state) has no nodes (no points where particle is guaranteed not to be found)

– if they give you a wavefunction and ask for its respective potential compute ∂2ψ
∂x2 and compare it to T.I.S.E.

– Always determine if ψ should be oscillating or decaying by looking at T.I.S.E. → recall it’s − ~2

2m
∂2

∂x2 so if
E − V > 0 oscillating ; if E − V < 0 decaying

– if V (x) is even: ψ can be either even or odd → parity alternates so that ψ0 is even; ψ1 is odd, etc...
if ψ(x) = ψ(−x) → 〈x〉 = 0
if wavefunction is even: always node in the middle

• the energy of quantum system made of only a rod connecting two point masses is given by the rotational degrees
of freedom s.t. : T = L2/2I = ~2n(n+ 1)/2I where n = l
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5.2 1-particle systems

• S.H.O.: En = ~ω(n+ 1
2 ); ψn = 1√

n!
(a†)nψ0 where a†|n〉 =

√
n+ 1|n+ 1〉; a|n〉 =

√
n|n〉

– 〈T 〉 = 〈V 〉 = En/2 → more generally for V (x) = λxn: 〈T 〉/〈V 〉 = n/2

– 3d: ψN = ψn,xψn,yψn,z with EN = (nx + ny + nz + 3
2 )~ω = (N + 3

2 )~ω
– if there is a wall on one side of S.H.O. potential all even states disappear

– Recall: classical harmonic oscillator at ground state has energy zero (particle sitting at x = 0)

• eigenstates of x: ψa(x) = δ(x − a); of p: ψa(x) = 1
~
√

2π
e
iax
~ = δ(p − a) → for a particle to have a definite

position/momentum they have to be in the respective eigenstates!

• free particles: ψ(x) = e±ikx; E = ~2k2

2m = ~ω with ω = ~k2
2m

– can carry any positive energy: cannot exist in a stationary state and is not a normalizable solution

– normalized wave-packet constructed by forming continuous superposition of ψk(x) for different values of k

• δ-function potential (V = −αδ(x)): like free particles with BCs: Ψ(0−) = Ψ(0+); ∆
(
∂ψ
∂x

)
x=0

= − 2mα
~2 Ψ(0)

– only 1 bound state with E < 0 → if V = αδ(x): only scattering states since by tunneling it will pass
through the barrier if it eventually must come back

• finite square well: since V is even then ψ0 is even → outside well decaying exponentials ψ ∝ e−kx; inside well
oscillating solutions ∝ sin, cos (as well gets shallower, excited states disappear until there is only 1 bound state)

• particle in a box: free particle with 1 BC: ψ(0) = ψ(L) = 0 → ψn =
√

2
L sin

(
nπx
L

)
; En = n2π2~2

2ma2

• Bound states: vmin < E < min(V−∞, V+∞) → discrete set of En and normalizable wavefunctions

• Scattering states: E > min(V−∞, V+∞) → continuous set of En and not normalizable wavefunctions

– if E > max(V−∞, V+∞) 2 states per energy level, otherwise only 1 state per energy level

– eikx for k > 0: plane wave moving to the right

– reflection coefficient R = |B|2
|A|2 ; transmission coefficient T = kR

kL

|C|2
|A|2 → R+ T = 1

– if k1 = k2 there is no reflection!; if k1 = 0 ∨ k2 = 0 there is no transmission

– when E < Vmax particle can still tunnel and be on other side but it has to come back eventually (R = 1)

– given de Broglie wavelength λ = ~
p : E = ~2

2mλ with λ = ~√
2mE

→ for particles scattering think of T = ~2

2mλ

5.3 Hydrogen atom & 3d-QM

• Bohr model: electrons in circular orbits with quantized values of angular momentum L = n~ → electrons in a
given shell do not radiate

• with radial potential V (r) → Ψ = R(r)Y (θ, φ) where Y are spherical harmonics

– angular momentum L = ~r × ~p: [Lx, Ly] = i~Lz (with cyclic permutations)

– Lz = −i~ ∂
∂φ → L2ψ = ~2l(l + 1)ψ; Lzψ = ~mlψ with m = {−l, .., l}

– if angular part of Ψ is equal to a spherical harmonics then Ψ has definite Lz = m and Ltot = l

– if ψ ∝ cos(mφ) possible eigenvalues are ±m~ as cos(mφ) = eimφ+e−imφ

2

– L2 commutes with all Li

– different coordinates commute with each other → [x, y] = [x, z] = [x, py] = ... = 0!

• Hydrogen atom has V = − e2

4πε0r
and En = − ~2

2µa2n2 where a = 4πε0~2

µe2 is the Bohr radius

– En ∝ µ (reduced mass) → if we have positron instead of proton then µ′ = µ
2 and hence E′0 = E0

2

– En ∝ 1/n2; En ∝ Z2 (# of protons); En ∝ (q1q2)2 (not ∝ (tot-charge)4)
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– the ground state energy E0 = −13.6eV → for hydrogen like atoms the binding energy is EB = Z2E0

– for each n: l = {0, 1, ..., n− 1} → ground state has zero angular momentum

– l ≤ k where k is the degree of polynomial → odd l for odd ψ in r (valid for l even as well)

– l = 0 when ψ is symmetric on every axis

– if two Ψs are spherically symmetric they have the same l

– for l 6= 0 Ψ = 0 at origin → states with l = 0 have higher probability to be found near the origin

• in transitions from nf to ni: ∆E = E0(1/n2
f − 1/n2

i ); λ = hc
∆E ; f = E0

h (1/n2
f − 1/n2

i )

– if electron bombard from outside of atom ni →∞
– Lyman series: nf = 1; Bolmer series nf = 2 (when looking for longst wavelength take ni →∞)

– Selection rules: transition between states can only happen if:
∆ml = ±1 or 0; ∆l = ±1 ( 6= 0); ∆j ± 1 or 0; ∆ms = 0
assume wavelength of electromagnetic radiation to be large compared to size of atom

• for a given n there are n2 possible combination of l and m

– 2n2 possible orbitals (to account for spin up and down); 2(2l + 1) possible states in each orbital

– shells fill in order from smaller values of l: {s, p, d} = {l = 0; l = 1; l = 2}
– for a given spin: the higher L the smaller the energy → state with highest total spin has lowest energy

• fine-structure constant: defines strength of electromagnetic interaction α = µ~
ac = e2

4πε0~c ≈
1

137

• ground state of Helium is singlet : spatially symmetric and antisymmetric in spin

• corrections to hydrogen energy in descendent order of magnitude:

– fine structure (∼ α2E0): spin-orbit coupling breaks degeneracy in l but keeps that in m → like Zeeman

effect for internal ~B where ∆H = e
2m (~L+ 2~S) · ~B with e

2m as the electron classic gyromagnetic ratio

– Lamb shift (∼ α3E0): splits 2s and 2p with j = 1/2→ like Stark effect for internal ~E filed where ∆H = e ~E ·~r
(perturbation is odd so 1st order effect on any even state is 0)

– hyperfine structure (∼ me
mp
α2E0): spin-spin coupling is given by tendency of spins to anti-align to ~B field

(energetically favorable) and splits ground state depending if spins are in singlet or triplet state → triplet
needs more energy caused spins are aligned ; in this transition the famous 21cm line is produced (∼ 5·10−6eV)

5.4 Spin

• intrinsic angular momentum of particle: SzΨ = ~mzΨ; S2Ψ = ~2s(s+ 1)Ψ

• S± = Sx + iSy → raising/lowering spin operator which preserves s and reduce/increase ms by one unit of ~
(remember to normalize them after computations!)

• if two particles have spin s and s′ then stot = {s+ s′; s+ s′ − 1; ...; s− s′}, mtot = ms +m′s

• spin 1/2: Si = ~
2σi where σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
– eigenstates in Ŝz basis: | ↑〉x = 1√

2

(
1
1

)
; | ↓〉x = 1√

2

(
1
−1

)
; | ↑〉y = 1√

2

(
1
i

)
; | ↓〉y = 1√

2

(
1
−i

)
– 2 spin 1/2 in singlet (antisymmetric) config. with s = 0 and triple (symmetric) config. with s = 1

• ~J = ~S + ~L: all possible values are {l + s; l + s− 1; ...; l − s} → highest: parallel & aligned ; lowest: antiparallel

• Recall: when you have S1 · S2/S · L remember that: A1 ·A2 =
(A1+A2)2−A2

1−A
2
2

2

• spectroscopic notation is given by 2s+1Lj where L ∈ {S;P ;D;F} corresponding respectively to l = {0; 1; 2; ...}

• spin and spatial operators always commute!
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5.5 Approximation methods

• Variational principle: choose set of possible wavefunctions in terms of parameter k → min〈Ek〉 is upper bound
on E0 where 〈Ek〉 = 〈ψk|Hψk〉

• T.I.P.T.: given H = H0 + λH ′ to 1st order E′n = 〈ψ0
n|H ′ψ0

n〉; ψ′n =
∑
n 6=m〈ψ0

n|H ′ψ0
n〉/(E0

n − E0
m)ψ0

m

– to 2nd order E′n =
∑
m 6=n |〈ψ0

n|H ′ψ0
n〉|2/(E0

n − E0
m)

– if states are degenerate create matrix W where each element Wij = 〈ψ0
iH
′ψ0
j 〉

eigenvalues of W are E′s corrections;
eigenvectors are good linear combination of unperturbed states

• Adiabatic transformation (slowly change H to H ′): final energy determined by corresponding eigenstate of
Hamiltonian with new parameter

• Sudden change: energy/wavefunction stays constant ⇒ for S.H.O. when ω → αω: {V, T} → {α2V, T (kinetic)}

5.6 Many particles systems

• distinguishable particles: Ψ = Πiψi with HΨ = EΨ and E =
∑
iEi

• indistinguishable: labels are not physical so swapping makes no difference

– Bosons (symmetric solution): integer spins and as many as you want in one state

– Fermions (antisymmetric solution): half-integer spins and only 1 per state

– Recall the symmetry is given by spatial +spin wavefunction

– when adding n-spins, the highest spin state (s = n
2 ) is always symmetric
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6 Special Relativity

6.1 Foundations

• In all inertial reference frames: speed of light is constant ; laws of physics are identical

• for γ = 1/
√

1− β2 with β = v
c then a S′ frame that moves with relative speed v has coordinates:

t′ = γ(t− v
c2x); x′ = γ(x− vt) → inverse transformation is the same with the + sign

for v ≪ c → γ ≈ 1 + v2

2c2 ; 1
γ ≈ 1− v2

2c2

• time dilation: ∆t = γ∆t′ (to derive this recall to fix x′ and not x ) → time is slower in rest frame so if you are
given the time in this frame in the lab more time has passed

• length contraction: L′ = γL (to derive this fix t and not t′) → objects moving are shortened by a factor γ

• object moving relative to another with speed v in x− direction: u′x = ux+v
1+uxv/c2

; u′y =
uy

γ(1+uxv/c2) ; u′z = uz
γ(1+uzv/c2)

• Lorentz transformation for boost along x-axis (easily generalizable to any other axis):

• pµ = (E/c; ~p) with ~p = γm~v (energy-momentum vector);

Jµ = (cρ; ~J) (current density vector); kµ = (ω/c;~k) (wave vector)

• E = T + E0 = γmc2 where E0 = mc2 (rest energy) and T = (γ − 1)mc2 (kinetic energy)

• The relativistic product a ·b = a0b0−
∑3
i aibi is invariant under Lorentz transformation (equal in all ref. frames)

• the invariant 4-vector displacement (∆x)2 = (xµB − x
µ
A)2

– (∆x)2 > 0 timelike: there exists an inertial frame where they both appear in the same place (v < c)

– (∆x)2 < 0 spacelike: there exists an inertial frame where they both appear in the same time (v > c)

– (∆x)2 = 0 lightlike: trajectory going at speed of light (v = c)

• relativistic Doppler shift only depends on relative velocity between source and observer v = βc such that:

– λ′

λ =
√

1±β
1∓β ; f ′ = c

λ′ = c
√

1∓β
1±β f → + or - in the numerator respectively tell us that the source is moving

away and towards us

– if speed of light is mentioned we are in the relativistic regime hence think of Doppler shift in these terms

• Lorentz transformations for E,B fields do not change their magnitude in the direction of motion of the particle

• when analyzing a system sometimes easier to take c = 1

6.2 Collisions

• E2 = ~p2c2 +m2c4 since p2
4d = m2c2 (4-vector pµ squared) in all inertial frames

• if no ext. force:
∑
i p
µ
i =

∑
f p

µ
f all the 4-energy momentum is conserved (recall this does not mean invariant !)

– tot. momentum and tot. energy: conserved but not invariant

– kinetic energy neither conserved nor invariant

• if two objects with same mass and speed collide against each other, resulting product has no speed and hence
only rest energy

• pay careful attention when you change reference frame: if in one frame A moves with v and B is at rest; in the
frame where A is at rest B moves with speed −v

• if particle moves with ω = ω′0 on a circular orbit, then in its frame ω′0 = 2π
∆t′ → hence in frame at rest ω0 =

ω′0
γ

• just act dumb: just apply the rules of energy-momentum conservation and the relativistic invariants
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7 Atomic Physics

7.1 Photons interactions

• chemical potential of photons is µ = 0: they can be created or destroyed in any process (no conservation law!)

• photoelectric effect (low energy): Emax = ~f − Φ

– Φ is work function (energy required to remove an electron from atom); Emax is the stopping energy

– fthr = Φ
~ ; T ∝ f (kinetic prop. to frequency); P ∝ Z4 (probability)

• Compton scattering with atomic electron (medium energy): ∆λ = h
mc (1− cos θ);

– ∆E = h∆f = hc
∆λ = mc2(1− cos θ) → the wider angle the more energy loses electron

– Compton wavelength is λ = h
mc : wavelength of photon whose energy is same as mass of particle

– P ∝ Z (probability)

• electron-positron pair production (high energy-Er > 2mec
2) → ~E near nucleus induces the process

there is no reverse reaction and the probability P ∝ Z2

• emission can be spontaneous (excited states always emit); stimulated (the more photons; the more are emitted

at same frequency; polarization; phase) → amplitude A2 ∝ (N + 1) where N = # photons; ω = (E2−E1)
~

• absorption has amplitude A2 ∝ N where N = # photons; ω = (E2−E1)
~

• N = # photons=Etot/
(
hc
λ

)
where Etot = P∆t → recall that p = h

λ then λ = h
mv (in order to go from λ to v

when you don’t know the frequency)

• Lasers keep lots of electrons in excited state through an optical pump causing population inversion

– spontaneous + stimulated emission from atoms cause cascade of electrons which excite other atoms and
cause exponential production of photons all coherent ; monochromatic; high intensity

– since excited state decays very fast: metastable state introduced between the two

– Diode: medium p-n junction injected with current; Solid state: medium is crystal ; Dye: medium is liquid

– Gas: collisional (transitions from collision btw. atoms); molecular (transitions are vibrational energy levels)

– free electrons: in ext. ~E field they emit bremsstrahlung producing synchotron radiation in a sinusoidal path
→ radiation produced from slowing down of electrons due to nuclear attraction

• Cherenkov radiation: results when charged particle (usually electron) travels through dielectric at speed faster
than that at which light is propagating in the medium

7.2 Nuclei properties

• masses of atoms ∼ 10−31kg ; nuclear size 10−15m

• Binding energy: BE =
∑
imic

2 −Mc2 (difference between mass of constituents and nucleus itself)

– much larger than energy holding electrons together (per nucleon ∼ a few MeV for most elements)

– BE per nucleon steadily increases with Z and then decreases for radioactive atoms: Z = 26 iron is most
stable atom; Z > 82 all nuclei will eventually decay

– resulting kinetic energy given by difference in binding energy between initial and final state

• for light elements # neutrons=#protons; for heavier elements # neutrons>#protons

• fission & fusion: spontaneous if mass of reactants is larger than mass of products

– enormous energy to overcome (electromagnetic repulsion between protons)

– generates enormous amount of energy
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• energy to remove one electron is ionization energy → for hydrogenic atoms E = Z2E0

– when last orbital is: full (noble gases) or almost full (alogens) high ; almost empty (alkali metals) low

– when they ask for electron charge distribution they mean the valance band→ think of what its corresponding
wavefunction looks like and its symmetries

– energy scale of atomic processes is a few ∼ eV: use it to approximate ionization energies of hydrogenic
atoms

• penetration depth is when 1
2mṙ

2 = V (r) = kZq2

r2 where → for two atoms with different Z: V (r) = kZ1Z2q
2

r2

• Recall: absorption and emission lines are always due to spin splitting (nothing to do with nuclear interactions)

7.3 Interaction of charged particles

• cross section A defines effective collision probability: A = P V
N

1
τ where P is prob. of being scattered; V

N is
concentration of targets and τ is the thickness

– can be also thought as area of the shadow (area of sphere from distance from the target)

– usually just think of data provided and do dimensional analysis

• nuclei target almost exclusively atomic electrons → energy loss: only through collisions in very small amount
(continuous flow as they interact); path shape: straight lines; avg. path length: 10−5m

• electrons target both nuclei and electrons → energy loss: through collisions/radiation; path shape: scattered at
various angles; avg. path length: 10−3m

• Decays: Alpha (α) → spontaneous decay of 2 neutrons + 2 protons

– Beta decay (weak-force decay): β− ⇒ emits electron and antineutrino; produces proton (n→ p+ e− + ν̄e)
β+ ⇒ emits positron and neutrino; produces neutron (p→ n+ e+ + νe)
neutrino are responsible for broad energy spectrum

– gamma (γ) radiation: emission of photons from excited state of nucleus which doesn’t change proton/neutron
composition

– Internal conversion (IC): excited nucleus interacts with electron on lower atomic orbital causing its emission
→ produces several x-rays

– Radioactive: decays randomly independently of how long it’s been around (Poisson distribution)
N = N0e

− t
τ with t 1

2
= τ ln 2 and τ = mean life ⇒ prob. of seeing zero events is P (0) = e−

t
τ

if substance can decays in many different ways tot. half time: 1/ttot
1
2

=
∑
i 1/ti1

2
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8 Specialized & Miscellaneous Topics

8.1 The Standard model of particles

• Weak force: W+ and Z bosons (very heavy ∼ 90x mp) mediate;
Leptons (electron/neutrino) interact with force; ⇒ also interact with EM force
quark interact also via weak force and can change flavor by emitting or absorbing W -boson

decay time ∼ 10−8s ; signature is emission of neutrino

• EM force: photons (massless bosons with s = 1) mediate; decay time ∼ 10−17s ; signature emission of photon

• Strong force: gluons (massless bosons mediate) → decay time ∼ 10−23s

– Hadrons interact with force: bosons (composed by quark-antiquark pairs with s = {0, 1}) are called mesons;
fermions (composed by 3 quarks with s = { 1

2 ,
3
2}) are called baryons

– protons (2 quark up-1 quark down); neutron (2 quark down-1 quark up) are called nucleons

– it involves color (corresponding charge of the force) → this was able to explain existence of 3 up/down
quarks together without violating the Pauli principle

– blue, green, red: together they make the white which means the charge is 0 and particle is color neutral

– given confinement property of strong force, free quarks cannot be seen in nature

• matter organized in 3 generations: each of them is heavier and less stable ⇒ 2nd, 3rd gen. decay to 1st

– 1st gen.: up quark (+ 2
3 ); down quark (− 1

3 ); electron; electron neutrino

– 1st gen.: charm quark; strange quark; muon (∼ 200x electron); muon neutrino

– 3rd gen.: top quark; bottom quark; tau (∼ 20x muon); tau neutrino

• every particle has an antiparticle with equal mass and opposite charge → photons are their own antiparticles
with s = −1; Z are their own antiparticles and W+ has antiparticle W−

• to determine which force is responsible for decay one must look at combination of life-time and decay products

• in particle physics anything that can happen will happen unless it’s forbidden by a symmetry/ conservation law:

– baryon and lepton number conserved (recall antiparticles have −1; particles +1)

– CPT symmetry: charge conjugation (C)⇒ switch particles with antiparticles and change sign of all charges
time reversal (T ) ⇒ t→ −t
parity transformation (P ) ⇒ reverses orientation in space

– supersymmetry: idea that particles have super-partners with exactly same charge and spin different by 1
2

– weak interaction is said to be maximally parity-violating

• Higgs boson (125GeV): responsible for giving mass to all elementary particles through mechanism of spontaneous
symmetry breaking (SSB) → when system moves to a vacuum solution that exhibits the same symmetry which
is broken for perturbations around vacuum and preserved for the entire lagrangian

• Recall: a neutron has non-zero magnetic-dipole moment but no electric-dipole moment → if it had it would
corresponds to a parity violation

• Recall: a freely propagating neutrino is superposition of muon and tau neutrino

8.2 Crystal Structures

• infinite repetitions of identical structural units (unit cells)

• Simple cubic: atoms at every vertex (d = a); Body-centered cubic (BCC): also atom at the center (d = a
√

3
2 );

Face-centered cubic (FCC): atoms at center of each face (d = a
√

2
2 )

• the smallest pattern is called primitive unit cell (not necessarily equal to unit cell)
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– BCC is octahedron with half volume of unit cell

– FCC is parallelepiped with quarter volume of unit cell

• Reciprocal (dual) lattice is the Fourier transform of the original lattice (in momentum space)

– Simple cubic is its own reciprocal lattice with length dp = 2π/a

– BCC and FCC are the dual lattices of each other

– the dual of an hexagonal lattice is another hexagonal lattice rotated by 30◦

8.3 Astrophysics

• scale factor a(t) measures expansion of universe → this causes redshift of photons which is used as measure of

time: a = 1/1 + z; λ0

λt
= a0

at
→ z(t) =

λ0

λt
− 1

• Hubble’s law (HL): v = H0d

– due to expansion of space, distant objects seem to recede from us (think of inflating balloon)

– given Hubble constant and distance use HL to find receding speed v and compute typical relativistic effect

• if universe expands by factor n; it cools down in temperature by factor n

• Neutron stars are giant spheres of neutrons (fermions): cannot collapse to be in same position by Pauli exclusion
principle

8.4 Error Analysis

• The sample variance is σ2
s = 1

N−1

∑
i(xi − x̄)2 → if sample: 1

N−1 ; if whole population: 1
N (std. dev. is just σs)

• error propagation: f = aA: σf = aσA; f = A±B: σf =
√
σ2
A + σ2

B ; f = AB ∨ f = A
B :

σf
f =

√(
σA
A

)2

+
(
σB
B

)2

• independent errors add in quadrature σtot =
√
σ2

1 + σ2
2

• inverse variance weighting: xavg =
∑
i wixi/

∑
i wi where wi = 1/σi and σavg = 1/

√∑
i wi

• Poisson distribution: P (n) = λne−λ

n!

– λ= exp. avg. number of counts in given time t and P (n) is probability to observe n counts in such time t
→ σ ≈

√
N if N ≫ 1;

– σavg =
√
µ where µ is mean value (on tot. count, not on count rate) ⇒ after N measurements σN =

σavg√
N

– if measurements are purely random always use Poisson

– the time between two Poisson events follows exponential: P (t) = λe−λt

– 90% confidence limit means we want to find rate that gives 0 with probability 0.1 (only 10% of the time):
P (0) = e−λt = 0.1

• Recall: accuracy means how far from true value ; precision means how reproducible the result is (variance)

• errors can be systematic (cannot be reduced); statistical (can be reduced by repeating experiments)
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9 General Tips for the Exam

• Always be very careful with signs!→ think about computing unsigned quantity and put sign just at the end.

• if a problem doesn’t give you a quantity that you thought you would need: think! it’s probably not useful
(usually it means that some other quantity is conserved)

• Remember to always exhaust all limiting cases and dimensional analysis before doing any algebra

– if you have choices with different dimensions always check them first, it may be enough!

– look at orders of magnitude to build some intuition

– use the units in the solutions to figure out if limiting cases can help remove possibilities

• answers that have numerical factors/ random numbers: slow down and work it out carefully!

• if the answer is wrong ; it’s just wrong ! → there are never typos in the exam!

• Recall generally never is too strong of a word to be favored by ETS: probably that choice is wrong!

• Always guess: there is no penalty for wrong answers!

9.1 Useful Math

• log plots: check if one or both axes are in log. scale

– check plots to see if: axis starts at 1 and not zero; squares that separate points are not equally spaced

– straight line: on log-log y = axb; on log-plot y = c · 10bx (here we assumed x-linear)

• Always read axis to verify if they carry dimensions

• ex ≈ 1 + x; (1 + x)n ≈ 1 + nx;
∑N
n=1 n = n(n+1)

2 ;
∑
n=1 x

n = 1
1−x for |x| < 1

• Fourier transforms: f̂(ω) = 1√
2π

∫ +∞
−∞ f(t)e−iωtdt → when asked about its coefficients think of symmetry of

function: if even no sin terms (odd!); if odd no cos terms (even!)

• if an event occurs with probability P and I want to make sure it does not happen N times: P̄N = (1− P )N

• Don’t forget Stoke’s theorem:
∫
S
∇×U · d~a =

∫
C

U · d~l

9.2 Numbers to memorize

• 13.6eV (E0 of hydrogen)

• 511keV (electron mass): whenever you see this number think of electrons

• 1.22 (Rayleigh criterion coefficent)

• 2.9 · 10−3m ·K (proportionality factor between λ and T )

• 2.7K (CMB temperature)
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