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1 Introduction

The Schwinger effect is a non-perturbative phenomenon by which electron-positron pairs can be produced

in vacuum by a static electrical field. Sauter was the first to find out in 1931 that the Dirac vacuum became

unstable against the pair creation of electrons and positrons, [1] but it is only in 1950 that this production rate Γ

per unit time and volume was rigorously computed by Schwinger, in the context of quantum electrodynamics. [2]

Γ =
e2E2

2π2

∞∑
n=1

1

n2
e−

nπm2

eE (1)

The non perturbative nature of this phenomenon is shown in the fact that the electromagnetic field is time-

independent and that the corresponding transition amplitudes are proportional to exp(−πm
2

eE )1 which implies

that the effect can never shows up at any fixed order in perturbative QED. [3]

As shown in eq.1, the external field must be very intense in order to lead to a significant probability for

particle production. The rate of pair production becomes of order 1 only for E ∼ Ec = m2e ≈ 1018 V/m which is

an enormous field that still surpass by several orders of magnitude the largest fields achievable experimentally. [3]

Although not empirically confirmed, the Schwinger effect has been proven theoretically through several

methods in quantum field theory: from the Wigner formalism to Bogoliubov transformations. [4, 5]

In this paper, I will at first use a quantum mechanical approach through the WKB-approximation to provide

an intuitive explanation of the nature of this effect as a tunnelling process. [6] Then, I will rigorously derive the

effect using the original’s Schwinger method through the in-out formalism with the effective action.

1Note, for simplicity in the notation, throughout this paper I always assume h̄ = c = 1, unless stated otherwise.
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2 The WKB Approximation

Figure 1: Schematic picture of the tunneling process involved in the Schwinger mechanism. The white band is

the gap between the anti-electron Dirac sea and the positive energy electron continuum, tilted by the potential

V (x) = −Ex in the presence of an external electric field E. [3]

To understand how the WKB-approximation method works in this context, it is crucial to at first introduce

the Dirac sea picture for the energy solutions that arise from the Dirac equation. In fact, this equation gives both

positive and negative energy solutions, a property that was at first seen as a problem since one has to explain

why a positive energy wouldn’t decay into a negative energy solution by a continuous emission of photons. To

solve this puzzle, we can indeed think of these energy solutions as part of the “Dirac” sea, according to which

the vacuum of the theory consists of a completely filled, negative energy band as well as an empty, positive

energy band, separated by an energy gap of 2m. A hole in the negative energy band is then simply interpreted

as the electron’s antiparticle, the positron.

According to this view, the behavior of the electron-positron pair transition probabilities can be understood

as a tunneling phenomenon by which a particle from the Dirac sea is pulled into the positive energy states.

In fact, as shown in fig.1, a level crossing occurs between the positive and negative energy bands once they

are tilted by the potential V (x) = −| ~E|x in the presence of a constant external electric field ~E. This level

crossing then allows a negative energy electron to tunnel through the energy gap to the positive energy band,

leaving a hole behind. [7]

One can thus get an estimate for the pair production rate using the WKB approximation tunnelling formal-

ism. To do this, first of all we need to define the potential across which the particles are moving. If we take the

center of nucleation at x = 0 then the positron e+ and electron e− move respectively in the potential: [6]

Ve±(x) = m± e| ~E|x if x > 0 (2)

where as expected electron and positron travel in opposite direction in x.

In the WKB approximation, the transmission probability coefficient for a particle tunnelling is proportional

to the exponential of 2I
h̄ , where I represents the integral of the particle’s momentum across the barrier p(x) =√

2m(E − V (x)). [8] This description is only valid for classical trajectories which in our case, are not available.

Thus we need to use the semiclassical interpretation of the tunneling effect which basically consists in turning
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the potential upside down or, in other words, performing a transformation to imaginary momentum in the

classically forbidden region, such that:

p(x)→ ip(x) =
√

2m(V (x)− E)

The appropriate solution for the tunneling rate can then be written as:

T = exp
{
− 2

∫ x0

0

√
2m(V (x)− E)dx

}
where, in the case under consideration, for a positron and a electron with no initial energy, their (imaginary)

momentum is given by the relativistic dispersion relation such that: [6]

Ie± =

∫ x0

o

pe± =

∫ x0

0

√
Ve±(x)[2m− Ve±(x)]dx

x0 represents the upper limit of the barrier and it can computed by making a simple consideration in relation

to the Heisenberg principle. The emission of the pair from vacuum has an upfront cost of 2m, which can only

be repaid once the pair are far enough apart, ∆x > 2x0 where x0 is hence equal to m

e|~E|
. [6] Finally since the

transition probability must describe the motion of both the positron and the electron, we need to sum over the

contribution from the respective integrals of the momenta I±. Thus:

T = exp
{
− 2
[
Ie+ + Ie−

]}
= exp

{
− 4

∫ x0

0

√
(m− e| ~E|x)(m+ e| ~E|x)dx

}
= exp

{
− 4m

∫ x0

0

√
1− x2

x2
0

dx
}

= exp
{
− m2

e| ~E|

}
Comparing this result to the production rate Γ in eq.1, one can note that T corresponds exactly to the ex-

ponential decay factor of the first and dominant term in the n summation of Γ, thus providing a fairly good

approximation for the total production rate.

3 S-Matrix and the QED effective action

In Quantum field theory, all the information about an autonomous quantum system is contained in its

unitary evolution operator Û or S-matrix defined to map an initial state to its final state according to the

Hamiltonian H of the system:

Û(tf , ti) = T exp
[
− i
∫ tf

ti

Ĥ(t′)dt′
]

Ŝ = lim
tf ,ti→±∞

Û(tf , ti)

The scattering amplitudes 〈b|Ŝ|a〉 determine the probabilities for the system to evolve from its initial state |a〉

to its final state |b〉. Thus, the probability for the vacuum to be stable also named the vacuum persistence

probability amplitude can be thought as the square of S0 = 〈0out|0in〉 = 〈0in|Ŝ|0in〉. A standard result in

field theory is that this vacuum transition amplitude can be rewritten as the exponential of the sum of all the

connected vacuum diagrams [9]:
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〈0out|0in〉 = eiV; ↗ (3)

After squaring this amplitude, we get P0 = exp[−2=(V)]. In the presence of an external source that remains

constant over a long period of time and that is sufficiently spatially homogeneous (in our case a constant electric

field E), the imaginary part 2=(V) can be written in the form of an integral over space-time 2=(V) =
∫
d4x(...),

whose integrand can be interpreted as the particle production rate per volume per unit time. [3] It becomes

thus clear that, in order to evaluate the electron-positron pair production rate, one must find S0.

A conventional method for computing the S-matrix of the QED theory is to exploit the functional integral

formalism and rewrite Ŝ as a path integral such that, given a constant electromagnetic field Aµ [9]:

S0 = Z0[Aµ] =

∫
DψDψeiS[ψ,ψ] (4)

where S[ψ,ψ] =
∫
dx4LQED represents the QED action. To evaluate the path integral in eq.4 it is useful to

introduce the effective action Υ[Aµ]2 so that S0 = eiΥ.3 According to eq.4, such effective action can be defined

as [10]: ∫
DA exp(iΥ[Aµ]) =

∫
DADψDψ exp

[
i

∫
dx4LQED

]
(5)

Now, given that LQED = ψ̄(i /D − m)ψ − 1
4F

µνFµν , one can note that the only term in the Lagrangian that

depends on the fermionic field ψ is that involving the Dirac operator /D, whose path integral is known [9] and

equals to: ∫
DψDψ exp

[
i

∫
dx4(ψ(i /D −m)ψ)

]
= Ndet(i /D −m) (6)

where N is some infinite normalization constant which later will be dropped out. Plugging in the result from

eq.6 into the right hand side of eq.4 one can write:∫
DψDψ exp

[
i

∫
dx4ψ

(
i /Dµ −m

)
ψ − 1

4F
µνFµν

]
= e−

i
4

∫
dx4FµνFµν + Ndet(i /D −m) (7)

Hence, ∫
DA exp(iΥ[Aµ]) =

∫
DAe−

i
4

∫
dx4FµνFµν + Ndet(i /D −m)

⇒ iΥ[A] +
i

4

∫
dx4FµνFµν = ln[det(i /D −m)] + lnN

= Tr[tr(ln(i /D −m))] + lnN

Where Tr specifies a Dirac trace and then I used the fundamental property for all n × n matrices B over C

which states that ln(detB) = tr(lnB). [10] A trace is a sum over all eigenvalues, in this case of (i /D −m), and

its value is basis independent. This means that one has the freedom to evaluate it in the space of preference.

Here, I will compute the sum on the position eigenstates, using the general formula for a matrix B:

trB =

∫
dx4〈x|B|x〉 (8)

2Generally the effective action is associated to the symbol Γ, in this paper to not create confusion with the particle production

rate Γ, I will always refer to it as Υ.
3Note that we are allowed to assume this form given the unitarity of the S-matrix SS† = S†S = 1, which simply expresses the

conservation of probability.
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As a result iΥ[A] becomes:

iΥ[A] = i

∫
dx4Leff = i

∫
dx4
(
− 1

4
FµνFµν

)
+ Tr[〈x|ln(i /D −m)x|〉]

⇒ Leff = −1

4
FµνFµν − iTr[〈x|ln(i /D −m)x|〉]

(9)

In eq.9, I defined the effective Lagrangian density Leff that arises from Υ[A] and I dropped the the infinite

normalization constant N, exploiting the fact that Leff can be always shifted by a constant to remove infinities

when it’s renormalized. [10]

Since the trace of an operator is invariant under transposition, given that the charge conjugation matrix

C satisfies CΥµC
−1 = −ΥT

µ , one can notice that Tr[〈x|ln(i /D −m)x|〉] = Tr[〈x|ln(−i /D −m)x|〉], [10] hence to

calculate its value it’s sufficient to average the two to get:

Tr[〈x|ln(i /D −m)x|〉] =
1

2
Tr[〈x|ln(− /D2 −m2)x|〉] (10)

Plugging this result into Leff and taking its derivative with respect to m2 one gets:

d

dm2
Leff = 0− i d

dm2

(1

2
Tr[〈x|ln(− /D2 −m2)x|〉]

)
=
i

2
Tr
[
〈x| 1

(− /D2 −m2)
|x〉
] (11)

By restoring the Feynman prescription iε in 1

− /D
2
−m2

, one can exploit a useful identity defined in [2]:

1

A+ iε
=

∫ ∞
0

ds(eis(A+iε))

⇒ 1

− /D2 −m2 + iε
=

∫ ∞
0

ds(eis(− /D
2−m2+iε))

(12)

where s is the so-called Schwinger’s proper time. This identity allows us to rewrite d
dm2Leff in the integral

form:
d

dm2
Leff =

1

2

∫ ∞
0

dse−ism
2−sε × Tr

[
〈x|e−i /D

2s|x〉
]

(13)

In integrating over m2 one notes that:∫ (∫ ∞
0

dse−ism
2
)
dm2 = −i

∫ ∞
0

ds

s
e−ism

2

(14)

Consequently, Leff becomes:

Leff = −1

4
FµνFµν +

i

2

∫ ∞
0

ds

s
e−ism

2

× Tr
[
〈x|e−i /D

2s|x〉
]

+ const (15)

where, in eq.15 I also dropped the term e−sε since it’s essentially negligible for ε≪ 1.

Before moving on with the computation, it is useful to reflect on the physical meaning of Leff as presented

in eq.15. In QED, the Dirac propagator G(x, y) in the presence of an external field Aµ can be written as [11]:

GA(x, y) = 〈y|Ĝ|x〉

where ĜA =
i

( /D −m+ iε)
= ( /D +m)

i

/D
2 −m2 + iε

(16)
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By rewriting GA(x, y) using the proper time integral formalism of eq.12, one can see that up to a factor of

( /D + m)/s, the proper time integral in eq.15 looks just like GA(x, y) for x = y. [10] Hence, we can interpret

the effective action as the sum of all closed fermion one-loop diagrams with increasing number of external

photons: [10]

(17)

4 The Euler-Heisenberg Lagrangian

In this section, I will derive the Euler-Heisenberg Lagrangian LEH [12] for a constant background elec-

tromagnetic field Fµν which directly arises from our formulation of Leff as in eq.15. This will serve as an

intermediate step in the evaluation of the effective action for the case of a constant background electric field E,

which can be simply viewed as a special case of LEH .

First of all to compute Leff , I will substitute /D
2 with D2

µ + e
2Fµνσ

µ, which can then be interpreted as the

Hamiltonian operator Ĥ.

The identity /D
2

= D2
µ + e

2Fµνσ
µν comes from multiplying the Dirac equation for a fermionic field ψ by

(i /D +m) on both sides to get:

(i /D +m)(i /D −m)ψ = (− /D2 −m2)ψ = 0

= (i/∂ − e /A+m)(i/∂ − e /A−m)ψ = [(i∂µ − eAµ)(i∂ν − eAν)ΥµΥν −m2]ψ

=
1

4

(
{i∂µ − eAµ, i∂ν − eAν}{Υµ,Υν}+ [i∂µ − eAµ, i∂ν − eAν ][Υµ,Υν ]− 4m2

)
ψ

=
(

(i∂µ − eAµ)2 − e

2
Fµνσ

µν −m2
)
ψ =

(
−D2 − e

2
Fµνσ

µν −m2
)
ψ ⇒ /D

2
= D2

µ +
e

2
Fµνσ

µν

(18)

where to go from the 3rd to 4th line of eq.18 I used the following identities:

{Υµ,Υν} = 2gµν1⇒ {i∂µ − eAµ, i∂ν − eAν}{Υµ,Υν} = 4(i∂µ − eAµ)2

[Υµ,Υν ] = −2iσ, [i∂µ − eAµ, i∂ν − eAν ] = −ie(∂µAν − ∂νAµ) = −ieFµν
(19)

We can hence rewrite Leff in the following form:

Leff = −1

4
FµνFµν +

i

2

∫ ∞
0

ds

s
e−ism

2

× Tr
[
〈x|e−iĤs|x〉

]
+ const

where for i∂µ → p̂µ ⇒ Ĥ = D̂2
µ +

e

2
Fµνσ

µν = (p̂µ − eAµ(x̂))2 +
e

2
Fµν(x̂)σµν

(20)

The first step in the evaluation of Leff is therefore computing 〈y|e−iĤs|x〉, once this is known I will simply set

y = x and integrate over s. By definition |x, s〉 = eiĤs|x〉, hence one can write:

∂s〈y, 0|x, s〉 = ∂s〈y|e−iĤs|x〉 = 〈y|e−iĤsĤ|x〉 (21)
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4 THE EULER-HEISENBERG LAGRANGIAN

Therefore, it becomes clear from eq.21 that if we can write Ĥ in terms of the positions operators x̂(s) and x̂(0),

one could turn eq.21 into an ordinary differential equation whose solution is 〈y|e−iĤs|x〉.

To achieve this goal, I will present Schwinger’s original method and thus introduce the operator Π̂ =

p̂µ − eAµ(x̂). Its commutation relation with x̂, assuming a constant Fµν , is given by [x̂µ, Π̂ν ] = −igνµ, [2] and

it simply arises from the generalization in 4d of the well know position and momentum operator commutator:

[x̂µ, p̂ν ] = −i 4d7−−→ −igνµ. In contrast with p̂, the commutation relation of Π̂µ with itself is non-zero and comes

straightforwardly from its definition: [Π̂µ, Π̂ν ] = −ieFµν . [2]

In terms of Π̂µ, the Hamiltonian operator becomes:

Ĥ = −Π̂µΠ̂ν +
e

2
Fµν(x̂)σµν = −Π2 +

e

2
tr(Fσ) (22)

The Heisenberg equations generated by the Hamiltonian Ĥ for the evolution of Π̂µ(s) and x̂µ(s) are respectively:

dΠ

ds
= i[Ĥ,Π] = 2eF ·Π,

dx

ds
= i[Ĥ, x] = 2Π (23)

where I used the commutation relations for Π̂µ defined earlier and the fact that F is constant and hence

commutes with all operators. [10] The solutions to the equations 23 are:

Π(s) = e2esFΠ(0)

x(s) = x(0) +
e2esF − 1

eF
Π(0) = x(0) + 2seesF

sinh esF

esF
Π(0)

⇒ Π(s) = eesF
eF

2 sinh(esF)
· [x(s)− x(0)]; Π(0) = e−esF

eF

2 sinh(esF)
· [x(s)− x(0)]

(24)

The Hamiltonian then takes the form:

Ĥ = −[x(s)− x(0)]
e2esFe2F2

4 sinh2(esF)
[x(s)− x(0)] +

e

2
tr(Fσ)

= x(s)Kx(s)− 2x(s)Kx(0) + x(0)Kx(0) +Kµν [x̂µ(s), x̂(0)] +
e

2
tr(Fσ)

(25)

where to keep simplicity in our notation, we define K = e2F2

4 sinh2(esF)
[2]. In the 2nd line of eq.25, I then moved all

the x(s) on the left and x(0) on the right picking out a factor Kµν [x̂µ(s), x̂(0)] which can be evaluated through

the commutation relations of Π̂ and x̂:

Kµν [x̂µ(s), x̂(0)] = tr
{

K
[
x(0) +

e2esF − 1

eF
Π(0),x[0]

]}
= tr

{
K
(

[x[0],x[0]] +
e2esF − 1

eF
[Π[0],x[0]]

)}
= tr

{
K
(
i
e2esF − 1

eF
)
)}

= tr
{
i

e2F2

4 sinh2(esF)
· e

esF2 sinh(esF)

eF

}
= itr

{ eFeesF

2 sinh(esF)

}
=
i

2
tr
{eF2e2esF

e2esF − 1

}
=
i

2
tr
{eF[(e2esF + 1) + (e2esF − 1)

e2esF − 1

}
=
i

2
tr
{
eF coth (esF) + eF

}
(26)

Since tr(F) = 0, Ĥ hence becomes:

Ĥ = x(s)Kx(s)− 2x(s)Kx(0) + x(0)Kx(0)− i

2
tr{eF coth(esF)}+

e

2
tr{Fσ} (27)

which finally allows us to rewrite eq.21 in terms of the position operators x̂(s) and x̂(0) such that:

∂s〈y, 0|x, s〉 = −
{

(y − x)
e2esFe2F2

4 sinh2(esF)
(y − x) +

i

2
tr{eF coth(esF)}+

e

2
tr{σF}

}
〈y, 0|x, s〉 (28)
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where x and y are the initial and final position vectors.4 The solution to this differential equation is rather

intuitive as it resembles that of an exponential with −i
∫
Ĥds at the exponent. Explicitly the general solution

takes the form: [10]

〈y, 0|x, s〉 = C(x, y) exp
{
i(y − x)

eF

4
coth (esF)(y − x)− 1

2
tr ln

[ sinh(esF)

eF

]
+
ies

2
tr{σF}

}
(29)

which holds for any function C(x, y). That said, we actually don’t have this much freedom, C(x, y) cannot be any

function since its form is fixed by two more conditions on the transformations of 〈y, 0|x, s〉 from the Π̂ operator,

which hence allow us to uniquely determine C(x, y), up to a normalization factor. The two conditions are stated

below as presented by Schwinger in [2], and were derived trivially from the definition of the Heisenberg-picture

operators Π̂, x̂:

(−i d
dy
− eA)〈y, 0|x, s〉 = 〈y, 0|e−iĤsΠ(s)|x, s〉 = eesF

eF

2 sinh(esF)
· (y − x)〈y, 0|x, s〉

(i
d

dx
− eA)〈y, 0|x, s〉 = 〈y, 0|e−iĤsΠ(0)|x, s〉 = e−esF

eF

2 sinh(esF)
· (y − x)〈y, 0|x, s〉

(30)

Combining the conditions in eq.30 with the solution of 〈y, 0|x, s〉 in eq.29, we obtain two differential equations

for C(x, y), specifically:

[−i d
dy
− eA− 1

2
eF(y − x)]C(x, y) = 0; [i

d

dx
− eA− 1

2
eF(y − x)]C(x, y) = 0 (31)

The solution to these equations C(x, y) has the form:

C(x, y) = C exp
[
ie

∫ y

x

dx′(A(x′) +
1

2
F(x′ − y))

]
(32)

where the integral is independent of the integration path given that A(x′) + 1
2F(x′ − y) has vanishing curl. [2]

C is a normalization constant and its value is determined by matching the Feynman’s propagator for a free field

written according to the Schwinger’s proper-time formalism, with the propagator arising from our solution for

〈y, 0|x, s〉 when A→ 0. Hence, the Feynman’s propagator for a free field GF (x, y) becomes:

GF (x, y) =

∫
d4p

2π
eip(x−y) i

p2 −m2 + iε
=

∫
d4p

2π
eip(x−y)

∫ ∞
0

dseis(p
2−m2+iε)

= − 1

16π2

∫ ∞
0

ds

s2
e
−i
[

(x−y)2
4s +sm2

] (33)

where in the first line, I used the identity in eq.12 to obtain an integral in Schwinger’s proper-time s, and in

the second line I dropped the ε prescription and solved the Gaussian integral in d4p according to the following

general identity for multi-dimensional Gaussian integrals: [10]∫
dnpe−

1
2p
†Mp+J†p =

√
(2π)n

det M
e

1
2J
†M−1J (34)

with n = 4, M = −2isgµν and J = i(x− y).

On the other hand, the Feynman propagator from 〈y, 0|x, s〉 is given by GF eff(x, y) =
∫
dse−ism

2〈y, 0|x, s〉

which in the limit of A→ 05 becomes:

lim
A→0

∫ ∞
0

dse−ism
2

〈y, 0|x, s〉 =

∫ ∞
0

dsC × e−i[
(x−y)2

4s +sm2] (35)

4It is also important to note that the last term in eq.28 e
2
tr{Fσ} has sign inverted compared to eq.27. In fact, since F is

anti-symmetric and σ is hermitian and unitary we know: tr{Fσ} = −tr{σF}.
5and consequently F→ 0
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4 THE EULER-HEISENBERG LAGRANGIAN

where, to reduce 〈y, 0|x, s〉, I used the fact that for z → 0: az coth(z)→ a and ln( sin(z)
z )→ 0.

Comparing eq.34 with eq.35, we get C = − i
16π2s2 which makes 〈y, 0|x, s〉 uniquely determined and allows us

to finally have an explicit expression for Leff in terms of the electromagnetic field F:

Leff = −1

4
F2 +

i

2

∫ ∞
0

ds

s
e−ism

2

× Tr
[
〈x|e−iĤs|x〉

]
+ const

= −1

4
F2 +

1

32π2
Tr
{∫ ∞

0

ds

s3
exp

[
− ism2 +

ies

2
tr(σF)− 1

2
tr ln

( sinh(esF)

esF

)]}
+ const

(36)

where 〈x|e−iĤs|x〉 = 〈x, 0|x, s〉 which corresponds to the expression in eq.29 for y → x, including the normal-

ization constant C previously determined.

By definition of a Lagrangian density, Leff should be real except possibly near singularities.6 To exhibit this

more explicitly, Schwinger proposes to perform a deformation of the integration path which essentially consists

in the substitution s→ −is, reducing Leff to the following form: [2]

Leff = −1

4
F2 +

1

32π2
Tr
{∫ ∞

0

ds

s3
exp

[
− sm2 +

es

2
tr(σF)− 1

2
tr ln

( sin(esF)

esF

)]}
+ const (37)

Now, to evaluate the Dirac and normal traces within the Lagrangian density, it is useful to introduce two new

quantities defined in terms of the field strengths ~B, ~E. [2] Specifically:

F =
1

4
F2 =

1

2
( ~B2 − ~E2); G =

1

4
Fµν F̃µν = ~E · ~B (38)

where F̃µν = 1
2ε
µναβFαβ . Using the identity on the anti-commutator between the pauli matrices 1

2{σµν , σλk} =

δµλδνk − δµkδνλ + iεµνλkΥ5 one can derive that: [2]

[tr(σF)]2 = (σµνF
µν)2 = 2(Fµν)21 + iΥ5ε

αβµνFµνFαβ = 8(F + Υ5G) (39)

Then, since Υ2
5 = −1,7 Tr(σF) has four eigenvalues λi = ±

√
8(F ± iG) given by all the 4 possible sign combi-

nations. Thus:

Tr
[
e
es
2 tr(σF)

]
= 2 cosh

[
es
√

2F + iG
]

+ 2 cosh
[
es
√

2F − iG
]

= 4< cosh[esX]

where X =
√

2F + iG =

√
( ~B + i ~E)2

(40)

Next, we need to express 1
2 tr
[

ln
(

sin(esF)
esF

)]
in terms of its eigenvalues which are in turn determined from those

of a constant Fµν . [10] To find the eigenvalues of Fµν , it is useful to introduce two trivial relations which come

strictly from the definition of G and F : [2]

FµλF̃λν = −δµνG; F̃µλF̃λν − FµλFλν = 2δµνF (41)

From the eigenvalue equations Fµνvν = λF vµ and F̃µνvν = − G
λF
vµ,8 we get by iteration two more relations:

FµλFλνvν = (λF )2vµ; F̃µλF̃λνvν =
G2

(λF )2
vµ (42)

6This is a very important feature of Leff . Indeed, as I will show in more detail in sec.5, it is the fact that Leff picks up an

imaginary part near its singularities that explains the non-zero probability for pair-production to occur.
7Υ5 has eigenvalues ±1
8this equation arises from the 1st equation in 41
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which, when plugged in the 2nd equation from 41, yields the eigenvalue equation:

(λF )4 + 2F(λF )2 − G2 = 0

⇒ λF+
± = ± i√

2

[√
F + iG +

√
F − iG

]
⇒ λF−± = ± i√

2

[√
F + iG−

√
F − iG

] (43)

1
2 tr
[

ln
(

sin(esF)
esF

)]
expressed in terms of the 4 eigenvalues λFi equals ln

(√∏4
i=1 g(esλFi )

)
where the function

g(x) = sinh(x)
x . Hence after some trivial algebra steps one gets:

exp
{
− 1

2
tr
[

ln
( sin(esF)

esF

)]}
=

e2s2G

= cosh(esX)
(44)

where X is the same as defined in eq.38.

Putting everything together we obtain the final result for Leff which takes the form of the so called Euler-

Heisenberg Lagrangian LEH :

LEH = −1

4
F2 − e2

8π2

∫ ∞
0

ds

s
e−sm

2

G
< cosh(esX)

= cosh(esX)
+ const (45)

5 Pair Production Rate

To investigate and then compute the rate of pair-production one must look into the behaviour of LEH near

its singularities. However, LEH in eq.4 is the unrenormalized Euler-Heisenberg effective Lagrangian, thus, as a

preliminary step, we need to normalize the Lagrangian. The simplest way here is to use minimal subtraction,

expanding the integrand in e up to the two leading terms: [10]

< cosh(esX)

= cosh(esX)
= − 4

e2s2
− 2

3
F2 + . . . (46)

These terms result in a UV divergence for s → 0. In this case, these divergences can be regulated by simply

applying a cut off at s > s0. [10] The required counter-terms are then the two leading terms from eq.46 with

opposite sign. Moreover, to normalize the infrared divergence for s → ∞ we must also reinsert the Feynman

prescription such that sm2 → sm2 − iεs with ≪ 1. [11] Putting all together, we can rewrite the normalized

LEH in the form:

LEH = −1

4
F2 − 1

8π2

∫ ∞
0

ds

s
e−sm

2
[
G
< cosh(esX)

= cosh(esX)
− 4

e2s2
− 1

3
F2
]

(47)

Now we are finally ready to explore the case of a constant electric field: ~E = cost; ~B = 0. Generally we know

from their definition that: F2 = 2( ~B2− ~E2) and X2 = ( ~B+ i ~E)2. Hence for the case of a constant electric field

(| ~E|= E): F2 → −2E2 and X → i ~E. According to these relations, the Euler-Heisenberg Lagrangian simplifies

to:

LEH =
1

2
E2 − 1

8π2

∫ ∞
0

ds

s3
e−sm

2
[
eEs cot(esE)− 1 +

1

3
(eEs)2

]
(48)

In this form, we can see that the integrand in LEH has poles for real E at sn = nπ
eE for n = 1, 2 . . . . Thus the

integral in ds can be computed using the residues method. It must be at first transformed into a integral over

10
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(−∞,+∞), then its integration contour must be deformed to include the negative imaginary axis and pick up

the contribution of the poles from the coth function. [11] The evaluation of this integral results in a positive

imaginary contribution to LEH which is precisely:

=LEH =
1

8π2

∫ ∞
0

ds

s3
e−sm

2

[eEs cot(esE)] =
1

16π2

∫ ∞
−∞

ds

s3
e−sm

2

[eEs cot(esE)]

=
1

8π2
× π

∞∑
n=1

Res[f(s), sn] =
1

8π2
× π

∞∑
n=1

1

s2
n

e−m
2sn

=
e2E2

2π2

∞∑
n=1

1

n2
e−

nπm2

eE

(49)

where f(s) = e−sm
2

s2 [eE cot(esE)].

As I explained in sec.3, introducing the effective action Υ was done in order to express the vacuum persistence

probability P0 = S2
0 using the fact that S0 = eiΥ. |eiΥ|2 therefore measures the probability that no pairs are

produced over time T and in a volume V . We then have:

P0 = |eiΥ|2= eiΥe−iΥ
∗

= e−2=[Υ] = e−2V T=LEH (50)

where =LEH is as computed in eq.49. Finally, according to my discussion at the beginning of sec.3, the

electron-positron pair production per volume per unit time Γ is exactly equal to 2=LEH :

Γ = 2=LEH =
e2E2

π2

∞∑
n=1

1

n2
e−

nπm2

eE (51)

in agreement with eq.1.

6 Conclusion

To conclude, in this research project, we saw how, in the presence of a constant electric field, the probability

of spontaneous electron-positron pair production in vacuum is non-zero. Quantum mechanically, this can be

explained as a tunneling phenomenon by which a particle from the Dirac sea is pulled into the positive energy

states. In terms of the in-out formalism of quantum field theory, the Schwinger effect arises from the existence of

poles in the proper-time representation of the effective action. In fact, their existence implies that the one-loop

effective action has not only a real part, the vacuum polarization, but also an imaginary part, representing

the vacuum persistence. Finally, this effect also turns out to be non-perturbative, as demonstrated by the
1
eE dependence in the exponential of Γ, which means that this result cannot be obtained from the standard

perturbation theory and the Feynman diagram formalism for quantum electrodynamics.
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