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Abstract

Galaxy clusters are the largest known gravitationally bound structures in the Uni-

verse. Their abundance as a function of redshift and mass is very sensitive to the

matter power spectrum and, hence, constitutes an essential probe for testing models

of the Universe and constraining the rate of growth of cosmological structure. In

this work we analyze the ACT S18dn cluster catalog of 2,869 clusters detected via the

Sunyaev-Zel’dovich effect. Specifically, we study the properties of the radial profiles

extracted from the thermal map and test the predictions of two theoretical models

for the cluster pressure profile, namely the Isothermal β model and the Universal

Pressure Profile (UPP). We also look at the profiles on the polarization maps to inves-

tigate whether or not there is a net polarization signal coming from the clusters. For

both of these analysis, we use a stacking method, thoroughly described in Chapter

4, which allows us to compute the average profiles at a specific mass and redshift

by stacking over mass and redshift ranges at a very high level of precision with

error bars at each radial bin σr ≲ 1µK. We then repeat the same analysis for the

525 clusters detected by the PlanckSZ2 survey [1] that are in the overlapping region

with the ACT field map but were not detected by the ACT experiment. We found that

by applying this stacking procedure we are able to resolve these clusters from the

unfiltered ACT map and note some distinct features in the thermal profiles of these

clusters when compared to those from the original ACT S18dn catalog.

Where it is necessary to adopt a fiducial cosmology, we assume Ωm = 0.3, ΩΛ = 0.7,

and H0 = 70 km s−1 Mpc−1, unless stated otherwise.
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The ACT data on which this thesis is based are proprietary and not yet public.

Related to this, all results presented here should be treated as preliminary and not

vetted by the ACT collaboration.

Finally we give credit to Professor Matthew Hilton for providing the complete

dataset of the clusters positions in R.A. and Dec, and their estimated mass and

redshift.
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Chapter 1

Introduction

1.1 The Physics of Galaxy clusters

1.1.1 Brief History of Structure Formation

The Big Bang model of cosmology posits that the Universe began in a hot, dense

initial state and then expanded continuously, diluting its energy density over time.

Assuming homogeneity and isotropy, the expansion of the Universe is determined by

the average energy density (ρi) and relativistic pressure (pi) of the i components of

the Universe, through the Friedmann equations derived from General Relativity [8]:

(
ȧ

a
)

2

=
8πG

3
ρtot −

kc2

a2
(1.1)

(
ä

a
) = −

4πG

3
(ρtot +

3ptot

c2
) (1.2)

here a(t) is the scale factor, a dimensionless function that describes the growth or

contraction of distances over time; and k is the curvature constant that can take one

of three values: k = 1 for a positive spatial curvature; k = −1 for a negative spatial

curvature and k = 0 for a spatially flat Universe [8]. Energy densities are commonly

expressed as fractions to the critical density ρc, defined as the the average energy
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density required to ensure geometrical flatness.

ρc =
3H(t)2

8πG
(critical density) (1.3)

Ωi =
ρi
ρc

(energy density parameter i),

here H = ȧ
a is the Hubble parameter, at first introduced by Hubble to describe the

relationship between distance and redshifts of galaxies and provide evidence for an

expanding Universe.1 The current prevailing cosmological model is the ΛCDM model

which postulates a geometrically flat Universe (k = 0) composed of standard baryonic

matter, nearly collisionless cold dark matter, radiation and dark energy in the form

of a cosmological constant Λ. By expressing eqs. 1.1 and 1.2 in terms of the fractional

energy densities Ωi, one finds that the scale factor a(t) evolves according to:

H(t) =H0

√

Ω0
γa

−4(t) +Ω0
ma

−3(t) +Ω0
Λ

2 with
m,r,Λ

∑
i

Ωi(t) = 1. (1.4)

Hence the expansion rate, as modeled by Friedmann’s equation, is determined by

the dominant energy component Ωi at each epoch.

The early Universe (a ⋘ 1) was radiation dominated, with both ordinary and

dark matter thermalized, due to the repeated interactions with photons and with each

other. As the Universe expanded, the average temperature of the Universe decreased.

When it fell below the weak interaction scale, interactions between dark matter and

the rest of the Universe became negligible, allowing the dark matter to cool and fall

1the redshift z refers to the stretching of the emitted wavelength of an electromagnetic radiation
(such as light) and is defined as z = λobs−λem

λobs
= 1
a
− 1 where λem and λobs are respectively the emitted

and observed wavelength. In the picture of the expanding Universe, the redshift of electromagnetic
waves is both a measure of physical distance and time and is caused by the travelling of such waves
through an expanding space which stretches out their wavelength.

2The Ω0
i refer to the current values of the density parameters of baryonic and cold dark matter

(Ω0
m ≈ 0.3), radiation (Ω0

γ ≈ 0) and the cosmological constant (Ω0
Λ ≈ 0.7). H0 is the present value of the

Hubble constant which in this paper is taken to be H0 = 70 km s−1 Mpc−1.
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into gravitational potential wells which amplified the primordial inhomogeneities3

and gave rise to the first structures [8].

After entering the matter-dominated era, when the temperature cooled sufficiently

below the hydrogen ionization energy, protons and electrons combined to form neu-

tral hydrogen atoms. This led to the decoupling of photons from matter, so that the

photons were finally free to propagate instead of being constantly scattered by elec-

trons and protons in the plasma. These relic photons form the Cosmic Microwave

Background (CMB) also called the surface of last scattering, which it’s described in

further detail in Sec.1.2.

After decoupling, more baryonic matter was drawn together under the influence

of the previously formed gravitational potential wells, as structures continued to

form. Initially, this process can be understood through linear cosmological pertur-

bation theory with primordial structures that act as small deviations δ = δρm
ρm

from a

perfect homogeneous Universe. The growth of these fluctuations in the linear regime

can be obtained by solving the equation:

δ̈ + 2Hδ̇ − 4πGρm = 0, (1.5)

which is derived by the hydro-dynamical equations of Newtonian physics for a fluid

perturbed to first order around the Hubble flow [9]. Quickly, as the wells grew

rapidly, non-linear and complex structures began to form in a hierarchical matter

with the most massive objects, galaxies and clusters, forming last and in some cases

still forming today. The gravitational collapse problem in the non-linear regime

becomes more difficult and requires N-body simulations in order to infer the mean

number density of halos in the Universe and the amplitude of the growth vs cosmic

time [10].

3the nature of these primordial inhomogeneities is still unknown and could be attributed to the
magnification of early quantum fluctuations via inflation or through some other mechanism.
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In “recent” times, approximately 4 billion years ago, the Universe entered the

dark energy-dominated area, which drives the current cosmological acceleration. Ac-

cording to the ΛCDM model, dark energy takes the form of a cosmological constant

which implies that such acceleration will never cease, so that the matter of the Uni-

verse, from stars and galaxies to atoms and subatomic particles, and even spacetime

itself, will be progressively torn apart ending up with a Universe so dilute to be

regarded as empty [11].

1.1.2 Fundamentals of Galaxy Clusters

Galaxy clusters are the largest known gravitationally bound structures in the Uni-

verse, consisting of anywhere between hundreds and thousands of galaxies. They

tend to have masses ranging between 1014-1015M⊙, while their typical size is around

107ly.4 81% of the total baryonic mass is distributed in the hot intra-cluster medium

(ICM) and only the remaining 19% makes up the stars in the galaxy clusters. This

corresponds to ∼ 3% of the total mass in clusters, taking into account dark matter,

which constitutes 84% of the total mass[12]. The ICM can be thought of as a plasma

that is nearly fully ionized due to the high temperatures created by the deep dark

matter gravitational potential which heats up the gas to temperatures close to the

virial temperature kT ∼
GMmp
Rv

5 , ranging between 1-15 keV[12].

Galaxy clusters form at the most extreme peaks in the matter density field and

thus their abundance as a function of redshift and mass is an essential probe for

testing models of the Universe, by setting constraints on the matter power spectrum

and the nature and properties of dark energy.

4Recall ly stands for light years.

5Here mp,M and Rv respectively stand for the mass of cluster and the mass and corresponding
viral radius of the cluster.
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To detect galaxy clusters and determine their size, mass and redshift, several

methods were implemented based on the different wavelengths of electromagnetic

radiation emitted by the ICM (e.g., optical and X-Ray surveys). One promising method

that has increased in importance is finding clusters through the Sunyaev-Zel’dovich

(SZ) effect on the CMB, (see Sec.1.2.1 for more details). In contrast with the ob-

served cluster brightness in other wave bands, the amplitude of the SZ distortions

is relatively redshift independent which makes this method particularly suited to

investigate the Universe at high redshifts [3].

1.2 The Cosmic Microwave Background (CMB)

The Cosmic Microwave Background was predicted in 1948 by Ralph Alpher and

Robert Herman and measured, for the first time, in 1964 by Arno Penzias and Robert

Wilson from the Bell Labs, who observed a mysterious persistent and isotropic mi-

crowave background in their radio-wave antenna receiver[13]. As previously men-

tioned in Sec.1.1.1, the CMB is the lingering radiation emitted during the infancy of

the Universe from the separation of matter and radiation, in the event known as de-

coupling. Its temperature map is shown in Figure 1.1 and approximately resembles a

blackbody spectrum with uniform temperature T ∼ 2.7 K and small spatial tempera-

ture anisotropies, which correspond to perturbations in the matter density across the

sky. Specifically, regions denser of matter at the moment of the photon-decoupling

experience a stronger gravitational redshift, which results in a slightly higher temper-

ature due to the compression of the primordial plasma into potential wells. These

temperature variations are in the range of 1 part to 105 and have a characteristic

angular scale of about 1 degree. In addition to these primary anisotropies, as a con-

sequence of the primordial photon-baryon fluid density fluctuations, the CMB also

presents secondary anisotropies, due to the interaction with a long list of objects, as
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Figure 1.1: The detailed, all-sky picture of the infant Universe created from nine years
of WMAP data. The image reveals 13.8 billion year old temperature fluctuations
(shown as color differences) that correspond to the seeds that grew to become the
galaxies. The signal from our galaxy was subtracted using the multi-frequency data.
This image shows a temperature range of ±200µK [2].

the relic photons travel across the whole observable Universe. Indeed, the CMB is a

backlight to all other sources of radiation between the LSS and the observer, which

contaminate and distort the primordial signal at different scales. These distortions in-

cludes effects like: the integrated Sachs-Wolfe effect, due to photons moving through

a gravitational potential; gravitational lensing, which redistributes the power toward

small scales and the Sunyaev-Zel’dovich effect (SZE) due to inverse Compton scatter-

ing of CMB photons by hot gas in clusters [14]. Sensitive measurements of all of these

and other effects can be studied from the temperature map of the CMB and provide

valuable information about the non-linear Universe6. For the purpose of this paper,

we are interested in the measurement of the SZE, which potentially constitutes the

most powerful tool in the study of clusters properties, given its approximate redshift

independence.

6Specifically a powerful method to extract this information is to examine the statistical properties
of the temperature fluctuations by computing the two-point correlation function in angular space, the
so-called CMB power spectrum. For a recent review on this topic refer to [15].

6



1.2.1 The Sunyaev-Zel’dovich effect (SZE)

The SZ effect is a small spectral distortion of the cosmic microwave background

(CMB) spectrum caused by the scattering of the CMB photons off a distribution of

high energy electrons, such as that provided by the ICM of galaxy clusters[3]. The

resulting inverse Compton scattering boosts the energy of the CMB photon approxi-

mately by kBTe
mec2

, causing a small distortion of ∼< 1 mK in the CMB spectrum as shown

in Fig.1.2 [3].

Figure 1.2: The CMB spectrum, undistorted (dashed line) and distorted by the
Sunyaev-Zel’dovich effect (solid line). The SZ effect distortion shown is for a fictional
cluster 1000 times more massive than a typical massive galaxy cluster [3].

One can express the SZ spectral distortion of the CMB as a temperature change

∆TSZE at dimensionless frequency x = hν
kBTCMB

according to:

∆TSZE
TCMB

= f(x)y, (1.6)

where y is the Compton-y parameter which can be thought of as the product between

the number of scatterings that a photon goes through and the fractional energy

gain given by each of the collisions (∼ kBTe
mec2

). y is also cluster model-dependent,
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characteristic that plays a crucial role in the cluster characterization, as we will show

in more detail in Chapter 2. The frequency dependence function of the SZ-effect

f(x), if one accounts for the relativistic correction δSZE, is given by [3]:

f(x) = (x
ex + 1

ex − 1
− 4) × (1 + δSZE(x,Te)). (1.7)

Generally, the size of the SZ effect is proportional to the volume-integrated thermal

pressure and it is independent of redshift, a feature which makes it a very powerful

tool for investigating the distant Universe[3]. If the cluster is moving with respect to

the CMB rest frame, there is an additional kinetic spectral distortion caused by the

Doppler effect of the cluster bulk velocity on the scattered CMB photons, whose size

is proportional to vpec
c [3]. Finally, the scattering of the CMB photons by the electrons

of the hot ICM can also result in a measurable polarization of the signal in the order

of τe times the SZ signal, where τe is the optical depth.

1.2.2 CMB Polarization

Fluctuations in temperature are not the only anisotropies of great interest, in fact the

CMB signal is also linearly polarized due to Thompson scattering of photons off free

electrons in the surface of last scattering [16]. This faint polarization signature, of

order of 1 µK, was first detected by the DASI experiment [17] and since it has been

observed by many other experiments. Polarized signals are typically expressed in

terms of the Stokes parameters, a coordinate dependent basis that decomposes the

electric field into an intensity component I and two linear polarization components
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Q and U such that [16]:7

I = ∣Ex∣
2
+ ∣Ey ∣

2 (1.8)

Q = ∣Ex∣
2
− ∣Ey ∣

2 (1.9)

U = ExE
∗

y +EyE
∗

x . (1.10)

The total linear polarization, P , is then given by:

P =
√
Q2 +U2. (1.11)

In the context of the CMB, the Stokes parameters Q and U are typically decomposed

into the so called E-modes and B-modes8. This decomposition is a linear transfor-

mation of the Q-U Stokes fields and it is not dependent on the choice of coordinates.

E-mode patterns are either tangential or radial and caused by scalar temperature per-

turbations (i.e. density fluctuations in the early Universe), while B-mode patterns are

spiral and caused by tensor perturbations (i.e. primordial gravitational waves)[16].

1.3 The Atacama Cosmology Telescope (ACT)

The Atacama Cosmology Telescope (ACT) is a 6m telescope located at 5200 m in the

Atacama desert in northern Chile. The site was chosen for its excellent atmospheric

transparency and access to both southern and northern skies which makes it among

the best sites in the world for ground-based observations at millimetre wavelengths.

Given the high resolution of the CMB observations acquired through this telescope,

the Sunyaev-Zeldovich effect (SZ), imprinted by clusters on the CMB, is measurable

7There is also a 4th parameter V representing the circular polarization component which we do
not consider since there is no mechanism by which circular polarization is generated in the CMB.

8This naming convention arises from the analogy of the curl free and divergence free properties
of electric (E-modes) and magnetic (B-modes) fields [18, 19].
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and can be used to detect and characterize clusters of galaxies on the celestial equator

where the observations were concentrated. The telescope has three 1024 element

arrays of transition edge sensors and observes the sky in four frequency bands at 90

GHz, 150 GHz and 220 GHz simultaneously with arcminute resolution. Specifically,

the FWHM9 of the point spread functions for the 90, 150 and 220 GHz arrays are

approximately 2.1’, 1.4’ and 1.1’, respectively.

For this study, we used the S18dn catalog of 2,869 confirmed clusters10 on a

15,170 square degree deep, contiguous region spanning from −60○ to +20○ in decli-

nation and across the whole sky in right ascension, as shown in Fig.1.3.

Figure 1.3: The figure shows the portion of the ACT equatorial survey region consid-
ered in this work, overlaid on the thermal Planck map in mK. The field spans from
−60○ to +20○ in Declination (Dec.) and across all sky in Right Ascension (R.A.). The
dots in light blue provide the location in terms R.A. and Dec of all confirmed 2869
detected clusters from the ACT S18dn cluster sample. Credit: [Professor Matthew
Hilton]

9FWHM stands for Full Width at Half Maximum.

10The S18dn catalog contains already 3,100 confirmed clusters, of these 231 don’t have a mass
estimate and or a redshift confirmation yet. Hence, in this work we only consider the remaining
2,869 clusters that have already an associated mass and redshift known.
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1.3.1 Galaxy Cluster Detection

In addition to the temperature decrements from galaxy clusters, the ACT maps con-

tain contributions from CMB, radio point sources, atmospheric fluctuations and other

sources of noise. Thus, as described thoroughly in [7], a series of matched filters in

Fourier space Ψθ500(k) is used to amplify the signal for cluster scale and suppress

the large scale fluctuations in the map. The signal template adopted for the intra-

cluster gas pressure profile is the Universal Pressure Profile (UPP) by Arnaud et. al

[4], which includes mass dependence in the profile shape and has been calibrated

to X-ray observations of nearby clusters [6]. To maximize the detection efficiency of

clusters at different scales, 24 matched filters were applied corresponding to differ-

ent combinations of the cluster redshift and inferred mass [7]. From the matched

filters, real-space filter kernels are constructed and then applied by convolution to

the maps. This method has the advantage of simplifying the analysis of split sections

from larger maps and the computation of the survey selection function [7]. To obtain

such kernels, the filters are truncated at 7′ radius which then requires the addition

of an high pass filter on the maps in order to remove noise at larger scales than 7′.

Finally, the real-space matched filter kernel are normalized such that they return in

each pixel the cluster central decrements ∆T (x) and the overall noise σ(x) [7].

Cluster candidates are then identified as all pixels with signal to noise ratio11

SNR= −∆T (x)
σ(x) > 4 and cross-matched, assembling the catalog at each cluster scale

using a 1.4′ matching radius[7].

11The maximum SNR across each filter scale is adopted for cluster detection. However as discussed
in [6] and in Sec.2.2 of this work, a single reference filter scale of 2.4′ is also adopted (SNR2.4) to
obtain the SZ-mass scaling relations and infer the selection function.
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1.3.2 Redshift Confirmation

One of the benefits of the location of the ACT equatorial cluster sample is the sig-

nificant overlap with other public surveys which is a crucial aspect to confirm the

cluster detection and determine independently their redshift. For many objects, the

redshift measurements come directly from these overlapping surveys, such as SDSS

[20], S82 [21] and VIPERS [22]. These surveys are also used to provide confirmation

on the redshift estimated through automated methods for cluster finding.

Specifically, the ACT collaboration developed an algorithm, named zCluster,12

thoroughly described in [7], which was applied to SDSS [20], S82 [21], and the CFHTLS

survey data13 to estimate cluster redshifts using multiband optical/IR photometry. In

addition, to obtain more precise estimates for clusters at higher redshift (z > 0.5), be-

yond the typical depth of the major public surveys, the ACT collaboration performed

follow-up observations which included optical/IR imaging with the Southern Astro-

physical Research Telescope (SOAR) and the Astrophysical Research Consortium 3.5

m telescope at the Apache Point Observatory (APO), and optical spectroscopy using

the SALT [7].

12https://github.com/ACTCollaboration/zCluster

13specifically the photometric catalogs of the CFHTLenS project [23, 24].
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Chapter 2

Cluster Characterization

2.1 The Compton y-parameter and other SZ-quantities of

interest

As it was discussed in Sec.1.2, the ACT cluster survey provides only two parameters

independently determined: the thermal decrements ∆TSZE from the SZ effect and

the redshift z. For the purpose of obtaining cosmological constraints from SZ sur-

veys, the masses of the detected clusters and their distribution are crucial parameters

(see Ch.3 ). Thus, it becomes important to model the SZ signal and determine the

mass scaling relation with z and ∆TSZE . The Compton y-parameter y is a convenient

value to use in the scaling relations, it is related to ∆TSZE through eq.1.6 and hence,

based only the non-relativistic SZ treatment, it can be estimated as:

y(θ) =
∆TSZE(θ)

TCMB

(x
ex + 1

ex − 1
− 4)

−1

. (2.1)
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Now, since y is defined as the product of the fractional energy change of a photon

per scattering times the mean number of scatterings, one can write:

y = N ×
δE

E
= ∫

+∞

−∞

ne
kBTe
mec2

σTdl, (2.2)

where the total number of collision N was derived given dN = nedV = neσTdl, with

ne equal to electron number density, and σT the Thomson scattering cross section.

Assuming the ideal gas law P = nekBTe, where kB is the Boltzmann constant, eq.2.2

becomes:

y =
σT
mec2 ∫

+∞

−∞

Pdl. (2.3)

This shows that the Compton y-parameter, and consequently the mass scaling relation

derived from it, are a measure of the intra-cluster gas pressure profile adopted. In

Sec.2.2, we present first the adiabatic model which provides very simple and intuitive

relations; then two improved scaling models: (1) the Isothermal β model and (2) the

Universal Pressure Profile, which is ultimately the one implemented to characterize

the SZ signal in the ACT catalog. Before moving on in this discussion, in Sec.2.1.1

we define and motivate the parameters commonly used to characterize clusters and

their pressure profiles.

2.1.1 The ∆ = 500 parameters

In order to establish relationships between mass, SZE flux, and other cluster proper-

ties, one needs to define a radius out to which all the quantities will be calculated.

A meaningful definition of the size a cluster is the radius within which the matter

within the gravitational halo is in mutual virial equilibrium, so that the mass of the

cluster can then be defined as the total mass within this radius, appropriately named

the virial radius. The extreme over-densities of matter within the cluster make it

fairly difficult to define and measure such equilibrium and the corresponding virial
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radius rv. Thus, cluster masses are practically defined with respect to some radius

within which the structure has a particular overdensity relative to the critical density

ρc at the cluster redshift. For an overdensity parameter ∆, R∆ is the radius of the

sphere within which the cluster density is ∆ × ρc(z). Then the cluster mass M∆ is

simply:

M∆ = ∆ ×
4πρc(z)R3

∆

3
. (2.4)

For X-ray and SZ studies, it is conventional to use ∆ = 500, denoting the mass and

radius respectively as M500c and R500c
1. Similarly, the angular size of the cluster is

denoted by the symbol θ500c and defined in terms of the characteristic radius by:

θ500c =
R500c

DA(z)
, (2.5)

where DA(z) is the angular diameter distance (see Appendix A for its full deriva-

tion). Another useful quantity, which turns out to provide a more accurate scaling

relationship with the mass [4], is the integrated Compton parameter over a sphere of

radius R500c, Y500c:

Y500c =
σT

mec2 ∫V500
Pdr3 = ∫

Ω500

ydΩ. (2.6)

2.2 The Cluster Pressure Profile

2.2.1 The Adiabatic Model

To build some intuition about the expected relations between the parameters defined

above and y, it is useful to introduce at first the simple adiabatic model which

assumes the cluster to be spherical, uniform and isotropic. These symmetries allow

us to use the virial theorem, which states that for a stable, self-gravitating, spherical

1The viral radius in this formalism is defined by ∆ = 200 with typical values of 1 − 3Mpc [25].
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distribution of equally massive objects2, their total kinetic energy is equal to minus

1
2 times the total gravitational potential energy (K = −1

2U ). Moreover, given the

assumptions on the geometry of clusters, their uniformity and isotropy, one also

knows that a cluster of mass M at temperature T has potential energy U = −3GM
2

5R and

kinetic energy K = 3
2NkT , where 3N equals to the number of degrees of freedom.

For a cluster of mass M, N ≈ M
mp

where we approximated the average mass of a

particle inside the cluster to that of the proton. Combining these relations with the

virial theorem and substituting R = ( M
4
3
πρ

)

1
3

one gets:

3
M

mp

kBTe = 3
GM2

5R
⇒ Te =

mpG

5kB
(

4

3
πρ)

1
3

M
2
3 ∝M

2
3 . (2.7)

Now given eq.2.2, the pressure P will simply be given by the ideal gas law and will

be thus proportional to Te and brought outside of the integral in dl. To obtain y,

one must therefore solve the integral ∫
+∞

−∞
dl along the line of sight. This integral, in

terms of the radius of the cluster R is approximately given by:

∫

+∞

−∞

dl = 2 lim
d→0
∫

+∞

d

r
√
r2 − d2

dr ≈ 2 lim
d→0
∫

R

d

r
√
r2 − d2

dr ≈ 2∫
R

0
dr = 2R. (2.8)

Substituting our results from eq.2.7 and 2.8 in eq.2.2 one gets:

y =
2GmpneσT

5mec2
M ∝M. (2.9)

From this we can conclude that, under the adiabatic pressure model, the Compton y

parameter of a uniform and isotropic cluster is correlated linearly to its mass M .

To scale the y-parameter in terms of M500c, one can then combine eq.2.4 with the

fact that the electron number density can be written in terms of the mass density

2stars, galaxies, clusters, etc.
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and the mass of an electron as ne =
ρ500c
me

such that:

y =
2GmpσT
5m2

ec
2

(500
3H2

0E(z)2

8πG
)M500c ∝ E(z)2M500c;

y(M500c, z) =
75H2

0mpσT
πm2

ec
2

M500c(Ωm(1 + z3) +ΩΛ). (2.10)

Thus, introducing the parameter M500c emphasizes an explicit dependence between

the central Compton-y parameter and the redshift z. In deriving eq.2.10, we used the

definition of critical density ρc(z) =
3H2

0E(z)
2

8πG , where E(z) = H(z)/H0 is the ratio of

the Hubble parameter at z to its present value H0 = 70 km s−1 Mpc−1 (see Appendix

A for more details).

2.2.2 The Isothermal β Model

The isothermal β model, at first introduced by Cavaliere and Fusco-Femiano [26],

considers the simplified case of an isothermal spherical cluster in hydrostatic equi-

librium (no net force applied to the matter in the cluster), such that the gravitational

potential φ is balanced by the internal pressure P of the gas according to:

dφ(r)

dr
= −

1

ρ(r)

dP (r)

dr
. (2.11)

Here, in contrast with the simple adiabatic model just presented, the density as

well as the pressure are not constant throughout the cluster, but rather a function

of its radius3. Now, we can express the mass density ρ(r) of the gas in the ICM

as the product of the electron number density ne(r) with the mean gas mass per

electron µe, such that: ρ(r) = ne(r)µe, with µe ≈ 1.14mp and mp equal to the mass

3in eq.2.11 the right-hand side represents the force per unit volume f on the matter in the cluster,
defined as f = ∇P (ρ) = 1

ρ(r)
dP (r)
dr

[27].
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of the proton4. Assuming the gas follows the ideal gas law: P (r) = ne(r)kBT we can

rewrite eq.2.11, also exploiting the fact that the gas temperature T is constant given

the assumption of isothermality:

dφ(r)

dr
= −

kBT

ne(r)µe

dne(r)

dr
= −

kBT

µe

d ln[ne(r)]

dr
. (2.14)

Given that dark matter makes up the majority of the material in clusters, one can

estimate the pressure distribution by looking at properties of the dark matter inside

the cluster. Specifically, assuming that clusters have an isotropic velocity dispersion

function5, the dark matter pressure distribution PDM(r) can be expressed as the

flux of momentum through a given area which gives us PDM(r) = σ2ρDM(r), where

ρDM(r) is the dark matter density and σ2 the velocity dispersion [26]. Plugging this

result back into eq.2.11 and integrating over r, after combining it with eq.2.14, we

get:

dφ(r)

dr
= −σ2d lnρDM(r)

dr

by eq.2.14:
kBT

µe

d ln[ne(r)]

dr
= σ2d lnρDM(r)

dr

integration in r ⇒ ne(r) = n
0
eρ
β
DM ; (2.15)

4This result follows from the assumption of a primordial composition of elements for the intra-
cluster gas, with ∼ 76% H and ∼ 24% He, such that:

ne = (1

1
× 0.76 + 2

4
× 0.24) ρ

mp
≈ 0.88

ρ

mp
ne =

ρ

µe
(2.12)

⇒ µe ≈ 1.14mp (2.13)

where the fractions in the brackets express the ratios of the number of electrons to the nucleons for
both hydrogen and helium: 1 electron and 1 proton for the hydrogen, against 2 electron, 2 protons
and 2 neutrons for the helium.[27]

5This assumption implies that the line-of-sight velocity dispersion σ2 = 4π
3 ∫ f(v)v

4dv where f(v)
is the Maxwellian velocity distribution.
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where we defined the dimensionless parameter β = σ2µe/kBT , which essentially

measures the ratio of energy per unit mass in galaxies (∼ σ2µe) vs gases (∼ kBT ) in a

cluster.

The dark matter density ρDM should be proportional to the galaxy number density

which is well approximated by the function [1+( r
rc
)

2

]
−

3
2

, derived empirically by King

from his studies of the Coma cluster [28]. Here, rc is the core radius of the cluster,

defined as rc =
√

2σ2

4πGρGO
, where ρGO is the central density of galaxies. Putting

everything together and recalling the proportionality between ne(r) and the pressure

profile P (r), we obtain the central result of the isothermal β model:

P (r) = P0[1 + (
r

rc
)

2

]
−

3β
2

. (2.16)

Given the definition of the Compton y-parameter in eq.2.3 we can integrate this result

to obtain the relationship between y and the linear size of the cluster d:

y(d) =
2σTP0

mec2 ∫

R500c

d

r
√
r2 − d2

[1 + (
r

rc
)

2

]
−

3β
2

dr

for d⋘ R500c → ≈
σTP0

mec2 ∫

+∞

d
[1 + (

r

rc
)

2

]
−

3β
2

dr

y(d) = y0[1 + (
d

rc
)

2

]

1
2
−

3β
2

(2.17)

where y0 = 2P0σT
mec2

rc
√
π

Γ( 3
2
β− 1

2
)

2Γ( 3
2
β)

6. Typical β-model parameters are β ∼ 1 and rc ∼

0.1 − 1Mpc. Figure 2.1 shows the β-model radial pressure profile for these typical

values, in comparison with the universal pressure profile that is presented in the

next section. The relationship between y and the angular size of the cluster θ is

equivalent with d→ θ and rc → θc, according to the definition of θ = d
DA(z)

.

6Note that in solving the integral and going from the second to the third line in the derivation,
we expanded to first order the hypergeometric function 2F1[ 1

2
, 3β

2
, 3

2
,−d2

r2c
] contained in the solution

of the integral [29].
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Finally, to obtain the relation for the mass M500c of the cluster, one must simply

recall that P ∝ ne ∝ ρ and then integrate eq.2.16 on the spherical shell of radius

R500c [29]:

M500c = ρ0∫

R500c

0
[1 + (

r

rc
)

2

]
−

3β
2

4πrdr (2.18)

= 4πρ0
r2
c − r

3β
c (R2

500c + r
2
c)

1− 3β
2

3β − 2
,

where ρ0 is the central density of the cluster.

Figure 2.1: The plot shows a comparison between the radial pressure profile of a
typical β-model cluster (solid curve), with β = 1, rc = 0.1 Mpc, M500c = 1014M⊙, and
z = 0.5, to the Arnaud et al. [4] universal pressure profile (dashed curve) with the
same values of z, M500c, and R500c = 0.8 Mpc. The profiles are normalized and shown
in log scale. We can note that the UPP has a faster falloff at large radii, as well as
becoming singular rather than flat at small distances.
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2.2.3 The Universal Pressure Profile (UPP)

The isothermal β model was based on three major assumptions, that clusters are: (1)

spherical, (2) isothermal in (3) hydrostatic equilibrium. Clearly these assumptions

cannot apply in all regimes. For instance, the model fails to take ellipticity and

other irregularities in the shape of clusters into account as this would violate (1)

[27]. Though this may be a fairly easy extension to make, the main probelmatics

remain and are represented by condition (2) and (3). Specifically, at large radii, (2)

is violated as the temperature must fall off to the background temperature of the

universe rather than remaining constant [27]. Hence, in this regime, the β model

will always underestimate the dropoff of the pressure profiles for any cluster under

consideration. Similarly, hydrostatic equilibrium can only apply in the regime where

the matter has become virialized, namely within the virial radius rv. Thus at large

radii > rv also the assumption of hydrostatic equilibrium (3) ceases to apply and the

β model becomes an inadequate description of the cluster profile.

To overcome such inadequacies of the isothermal β model, Navarro, Frenk, and

White (NFW) proposed a pressure profile model fitted for dark matter halos in clus-

ters, based on the results of N-body simulations [30]. The NFW profile extends upon

the β model by adding supplementary parameters and it allows pressure profiles to

became singular rather than flat at small radii [27]. Its generalized form is [31]:

p(x) =
P (r)

P500

=
P0

xγ (1 + xa)
β−γ
α

. (2.19)

Here x = r
rs

and rs =
R500c

c500
. The parameters (γ,α, β) are respectively the central slope

(r ≪ rs) , intermediate slope (r ∼ rs) and outer slope (r ≫ rs) , of the profile with the

dimensionless parameter c500 that defines the transition between these regions [4].

Using a sample of 33 clusters from the REFLEX catalogue, all with z < 0.2, Arnaud

et al.[4] calculated the best fitted parameters of the generalized NFW profile which
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correspond to:

[P0, c500, α, β, γ] = [8.403h
−

3
2

70 ,1.177,1.0510,5.4905,0.3081]. (2.20)

Following [31] and [32], Arnaud et al. defined the characteristic pressure P500 from a

standard self-similar model, purely based on gravitation, obtaining that:

P500 = 1.65 × 10−3H(z)
8
3 [

M500c

3 ⋅ 1014M⊙

]

2
3

keVcm−3. (2.21)

Starting from this scaling relation, they derived empirically the mass and redshift

dependence of the scaled profile P (r), which results in [4]:

P (r) = P500 ×
P0

(c500x)
γ
(1 + (c500x)

α
)
(β−γ)
α

× [
M500c

3 ⋅ 1014M⊙

]

αp+a′p(x)
, (2.22)

where in this case x = r
R500c

and αp and α′p (x) are coefficients empirically determined

to be:

αp = 0.12, α′p (x) = 0.10 − (αp + 0.10)
x3

(0.125 + x3)
. (2.23)

The Compton y-parameter cannot be expressed in an analytic form and may only

be computed according to its definition in eq.2.3 through numerical methods of

integration.
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Chapter 3

Cluster Abundance and Cosmological

Analysis

As discussed in Sec.1.1.2, the evolution of the cluster abundance as a function of

mass and redshift is a very useful probe of the fundamental cosmological parame-

ters. The formation of the large–scale dark matter potential wells of clusters involves

mostly gravitational physics [33]. Hence, the abundance of clusters Ntot and their

distribution in redshift dN
dz should be determined purely by the geometry of the uni-

verse and the power spectrum of initial density fluctuations [34, 35, 36]. Exploiting

this relation, measurements of the cluster abundance can be used to constrain the

amplitude σ8 of the power spectrum on cluster scales of 8 h−1 Mpc and the matter

density parameter Ωm. Given the surface-brightness redshift-independence of the SZ

effect, selected cluster samples using this method also constitute a powerful probe

for tests of the dark energy paradigm and to set constraints on its equation of state

parameter wDE1.

1This property of the SZ effect allows us to obtain nearly mass-limited samples at arbitrary red-
shifts and thus study the evolution of the cluster abundance at the time when dark energy begins
to contribute significantly to the energy budget of the universe (z ∼ 1). Note, the definition of the
universe element i equation of state parameter wi is: wi = pi

ρi
. Hence in the case of a cosmological

constant wDE = wΛ = −1.
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In recent years, constraints on cosmological parameters from SZ cluster surveys

have been obtained by the Atacama Cosmology Telescope (ACT) [7, 6], the South Pole

Telescope (SPT) [37] and the Planck satellite [38]. To extract cosmological constraints

from these surveys, it is required a sophisticated likelihood analysis whose critical in-

gredient is the underlying likelihood that the galaxy cluster statistics of the observed

sky would be realized within a particular universe [39]. Performing this type of anal-

ysis goes beyond the scope of this thesis. Hence here, to simplify the discussion, we

assume that all the characteristic features of a survey (e.g., selection function, depth

as a function of the sky position, etc.) can be fully encoded in the value of a mass

threshold Mthr and effective survey area ∆Ωeff
2. We then derive in Sec.3.2.3 the

redshift cluster distribution of the ACT S18dn cluster sample and fit it to the ΛCDM

theoretical prediction using a least-squares method with three free parameters: σ8,

∆Ωeff and Mthr.

3.1 Theoretical basis for Cluster Cosmology

Within a given survey enclosed in a solid angle ∆Ω, the expected number of clusters

per redshift with mass above Mthr can be calculated by:

dN

dz
(M >Mthr) = ∆Ω

dV

dzdΩ
(z)∫

∞

Mthr(z)
dM

dn

dM
(M,z), (3.1)

2see Sec.3.2.2 for more details on the implications of this assumption and the physical meaning
that these two quantities take on.
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where dn
dM is the halo mass function and dV

dzdΩ is the comoving volume element 3.

The comoving volume V is the volume measure in which number densities of non-

evolving objects locked into the Hubble flow are constant with redshift [40]. It is

given by [10]:
dV

dzdΩ
=D2

Ac
(1 + z)2

H(z)
, (3.4)

where DA is the angular diameter distance at redshift z and H(z) is the expansion

rate of the universe as defined in eq.1.4 with a→ 1
(1+z)

4.

3.1.1 The Halo Mass Function

As emphasized by eq.3.1, the mass function is the primary input to determining the

expected cluster count for a given survey and it is defined as the number density of

halos at a given mass. Today, our theoretical understanding of halos formation and

their properties (the mass, spatial distribution, and inner profiles) is still relatively

crude, hence research heavily relies on careful numerical studies in order to obtain

accurate results. In 1974, Press and Schechter sketched a simple theoretical frame-

work [41] which served as the base for more complex and extended models later

proposed. Press-Schechter (PS) theory provides the analytic formula for the build-up

of halos where the initial field of density fluctuations is smoothed using a spherically

symmetric filter5 centered on a given position to obtain information about the likeli-

3To get an intuition for this formula one can simply think of it as a pure differential obtained by
the chain rule:

dN

dz
= ∫

dN

dV dM
dM ⋅∆Ω

dV

dzdΩ
(3.2)

= ∆Ω
dV

dzdΩ
⋅ ∫

dn

dM
dM with n = N

V
. (3.3)

4For a graphic representation see Appendix A.

5The examined window functions were a sharp k-space filter, a Gaussian filter and a top hat
filter, with the latter being the most popular given the simplified correlation that arises between δ at
different R scales which helps in computing the desired statistics directly.
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hood of later collapse on varying scales [41]. The theory makes several assumptions:

(1) the mass density field δm is described by a Gaussian distribution, (2) that each

object is formed by gravitational collapse of mass density fluctuations, and (3) that

such fluctuations can be treated with a linear approximation through the spherical

collapse model [41]. According to the PS formalism, by smoothing the linear density

perturbations on some mass scale M , the regions where the smoothed density field

exceeds the critical over-density for collapse δc ≈ 1.696 correspond to collapsed objects

of mass greater than M . Hence, the probability that a given point lies in a region

where δ > δc is:

P (δ > δc∣M) =
1

√
2πσM

∫

∞

δe
exp [−δ2/2σ2

M]dδ, (3.5)

where σM is the variance of the density field filtered on scale R which encloses M 7

and given by:

σ2
M =

1

2π2 ∫

∞

0
P (k, z)W̃ 2

R(k)k
2dk, (3.6)

with P (k, z) and W̃R(k) corresponding respectively to the matter power spectrum

and the Fourier transform of the filter function, here taken to be a top hat,

W̃R(k) =
3

(kR)3
[sin(kR) − (kR) cos(kR)]. (3.7)

The crucial step in the derivation of the PS mass function formula is to set

P (δ > δc∣M) in eq.3.5 equal to the fraction of the universe condensed into objects

6this is the value calculated in the linear approximation for a Einstein-de Sitter (EdS) Universe
which is still valid for the ΛCDM model, given the weakly dependence of δc on the cosmological
model in this linear regime. For the extended derivation refer to Appendix B.

7The relation between R and M is simply M = 4π
3
ρ0R

3 where ρ0 is the uniform background
density
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with mass greater than M (in short P (>M)) multiplied by 28. The mass function is

then defined as the comoving number density per unit mass which is obtained by

differentiating P (>M) with respect to M and converting from the volume fraction

to mass fraction multiplying by ρ0
M [10]. This yields the famous Press-Schechter mass

function formula [41]:

dn

dM
=

√
2

π

ρ0

M

δc
σ2

dσ

dM
exp [−

δ2
c

2σ2
] . (3.8)

That said, while qualitatively correct, the P-S mass function and numerical results

are known to deviate in detail. Specifically, the PS function overestimates the abun-

dance of halos at the low mass end and underestimates the abundance in the high

mass tail [42]. Several models for the halo mass function have been proposed since,

either by considering extensions of the Press-Schechter formalism [43, 44, 45] or by

constructing a general fitting formula based on the results of numerical simulations

[42, 46, 47]. In this paper, we use the mass halo function derived by Tinker et al [5].

In their work, they use a large set of collisionless cosmological simulations of flat

ΛCDM cosmology to derive fitting functions for the mass function for virial masses

in the range 1011h−1M⊙ ≤ M ≤ 1015h−1M⊙ for a wide range of over-densities ∆ and

redshift z. Their results improve on previous approximations by 10-20% and also

show that the mass function, in contrast with the previously formulated models,

cannot be represented by a universal fitting function at this level of accuracy [5].

The halo abundance takes the functional form:

dn

dM
= f(σ)

ρ0

M

d lnσ−1

dM
, (3.9)

8Originally the postulate from Press and Schechter in [41] set P (δ > δc∣M) = P (>M, t). However,
such postulate predicts that only 1

2
of all matter in the Universe is enclosed in collapsed halos as for

σM → ∞, P (δ > δc∣M) → 1
2

. To resolve the problem Press and Schechter added by brute force this
factor of 2.
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Figure 3.1: The figure shows the mass function derived by Tinker et al. [5] plotted
as (M2/ρ0)dn/dM vs M/h−1M⊙ both in log scale, with the mass of the halo taken
to be M500c. The three curves represent respectively the mass function at redshift
z = 0 (solid), z = 1 (dashed) and z = 2 (dotted). All curves are approximately flat
until they reach their characteristic mass threshold, after which they fall off sharply.
Specifically, at higher redshifts correspond smaller mass cutoffs, as we would expect
given that large scale structures form in a hierarchical matter.
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with the function f(σ) parametrized as:

f(σ) = A [(
σ

b
)
−a

+ 1] exp [−
c

σ2
], (3.10)

where σ is defined as in eq.3.6 and A, a, b, and c are constants to be calibrated by

simulations representing, respectively, the overall amplitude of the mass function,

the slope and amplitude of the low-mass power law, and the cutoff scale at which

the abundance of halos exponentially decreases [5]. The best fitted values of these

parameters for our case of interest ∆ = 500 are:

[A,a, b, c] = {0.220,1.682,1.868,1.386}.9

Figure 3.1 shows the obtained mass function at ∆ = 500 for 3 different values of

redshift, namely z = {0,1,2}.

3.1.2 Exploring the theoretical cluster distribution for ΛCDM

Given the halo mass function from eq.3.9, one can now estimate the theoretical

cluster distribution per redshift for the ΛCDM model 10, according to eq.3.1. There

are three separate contributions to this theoretical prediction:

1. The comoving volume element dV
dΩdz , which is fully determined by the density

parameters characteristic of the ΛCDM model.

9These values are obtained from the fitting functions for the parameters of f(σ) in terms of log10 ∆
provided by Tinker et al in [5]:

A = 0.1(log10 ∆) − 0.05; a = 1.43 + (log10 ∆ − 2.3)1.5

b = 1.0 + (log10 ∆ − 1.6)−1.5; c = 1.2 + (log10 ∆ − 2.35)1.6.

10Eq.3.1 is actually valid for any cosmological model but here we only discuss the predictions for
ΛCDM model, since is the only model we use as framework throughout this thesis.
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2. The integral over the mass function 11, which can only be evaluated numerically

and it is a very sensitive function of Mthr and σ8.

3. The survey area ∆Ω, which acts as a normalization factor.

This shows that, on a purely theoretical standpoint, there are only three elements

that can effect the total cluster count, namely: σ8, Mthr and ∆Ωeff . The latter, as we

just mentioned acts simply as a normalization factor. Hence, the shape of the overall

distribution is fully determined by σ8 and Mthr. Specifically, for larger values of

σ8, more clusters are found at higher redshift consequently shifting the peak of the

distribution towards the right. On the other hand, a high and flat mass threshold

has the opposite effect, shifting considerably the peak of the distribution to lower

redshifts. Figure 3.2 shows these opposing actions separately: the top plot presents

the cluster distribution for constant Mthr = 1 ⋅1014M⊙ and varying σ8 = {0.7,0.8,0.9};

conversely the bottom plot presents the corresponding distribution for constant σ8 =

0.8 and varying Mthr = {1,3,5} ⋅1014M⊙. For both cases the total survey area is taken

to be ∆Ω = 10 degrees2.

11which we take to be that derived by Tinker et al. (eq.3.9), as motivated by the discussion in
Sec.3.1.1.
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Figure 3.2: The two figures show the cluster redshift distribution given the Tinker et
Al.[5] mass function, ∆Ω = 10 degrees2 and varying σ8 and Mthr. Specifically the top
panel has constant Mthr = 1 ⋅1014M⊙ and varying σ8 = {0.7,0.8,0.9}; the bottom panel
has constant σ8 = 0.8 and varying = Mthr = {1,3,5} ⋅ 1014M⊙. The plot emphasizes
the conflicting effects of σ8 = 0.8 and Mthr on both the normalization and shape of
the distribution. Specifically, dN/dz shifts to the right and has a lower total cluster
count for increasing σ8 and/or decreasing Mthr; and it shifts to the left and has a
higher total cluster count for decreasing σ8 and/or increasing Mthr.
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Finally, Figure 3.3 shows the theoretical estimate of the cluster distribution at

different mass thresholds for a survey area equal to that of the ACT S18dn cluster

catalog, namely with ∆Ω = 15,170 square degrees. Here σ8 is taken equal to 0.8, in

accordance with the mounting evidence that constrains σ8 around this value [48, 49,

6]. Considering that the estimated mass of the lightest cluster from the ACT sample

is ∼ 1 × 1014M⊙
12, it is interesting to note that the purely theoretical estimate of the

total number of clusters Ntot for masses above such threshold is roughly 3 orders of

magnitude larger than the total number of detected clusters in the ACT survey.

12see Sec.3.2.1 for the details on the method used by the ACT collaboration for the cluster mass
evaluation.
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Figure 3.3: Theoretical prediction of the cluster redshift distribution given the Tin-
ker et Al mass function, ∆Ω = 15,170 degrees2, σ8 = 0.8 and three different mass
thresholds in units of 1014M⊙: Mthr = 1 (dotted), Mthr = 3 (dashed) and Mthr = 5 (dot-
dashed). For comparison, it’s plotted the corresponding dN/dz distribution from the
ACT S18dn cluster sample (see Sec.3.2 for more details in this computation). The total
number of clusters above each threshold Ntot is defined as the are under the curve.
For Mthr = 1, which corresponds approximately to the estimated mass of the lightest
cluster in the ACT sample, Ntot ∼ 106, roughly 3 orders of magnitude more than the
total number of clusters observed by ACT.
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3.2 dN
dz cluster distribution from the ACT S18dn survey

The huge difference evidenced in the previous section, between the total number

of clusters predicted by the theory and what we actually observe, relates to the

observational effects of cluster detection. These effects include intrinsic astrophysical

properties of clusters and the selection function associated with the cluster finder

algorithms. Hence, in order to use the galaxy clusters count distribution derived from

an experiment for cosmological purposes, one needs to characterize these effects very

accurately. The mean to accomplish such characterization is, as we mentioned in the

opening paragraph of this chapter, a comprehensive likelihood analysis such as the

one described in [6, 49, 38].

Here, to simplify this analysis, we take the ACT mass estimate method, which

we present in Sec.3.2.1, to be true and we consider the main effects of the selection

function (see Sec.3.2.2) to be fully encoded in the value of the mass threshold Mthr

and effective survey area ∆Ωeff .

3.2.1 Cluster mass estimate

As thoroughly described in [6], for the purposes of using the SZ signal to estimate

cluster masses, the ACT collaboration developed a framework in which they consider:

(1) the cluster profile to be well described by the UPP (see Sec.2.2.3), up to some

overall adjustments to the normalization and mass dependence; (2) the SZ signal

to be parametrized by a single statistic, obtained from the ACT map filtered using

Ψ5′.9(k) and (3) the relativistic SZ-corrections to be negligible. This approach allows
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them to compute the “uncorrected”13 Compton y-parameter ỹ0 as:

ỹ0 = 10A0E(z)2m1+B0Q (θ500c/m
C0) frel(m,z), (3.12)

where [10A0 ,B0,C0] = {4.950 × 10−5h
1
2
70,0.08,−0.025}; frel(m,z) = 1 + 3.79t − 28.2t2

includes the relativistic effects for the gas temperature Te14; m = M500c/(3 ⋅ 1014M⊙)

is a convenient mass parameter and

Q(θ) = ∫
d2k

(2π)2
Ψ5.9(k)B(k)∫ d2θ′eiθ

′
⋅kτ (θ′/θ) 15 (3.13)

is the spatial convolution of the filter, the beam, and the cluster’s unit-normalized

integrated pressure profile [6] (see 3.4).

The usage of a single filter clearly simplifies data processing and has the addi-

tional advantage that one does not suffer from inter-filter noise bias. Moreover, one

can note from Fig.3.4 that the fixed angular scale at θ500c = 5.9 lies in the regime

where the measured ỹ0 statistic for high significance clusters is approximately con-

stant [6]. Hence, eq.3.12 relates ỹ0 to the mass and redshift of a cluster while ac-

counting for the impact of the filter on clusters whose angular size is determined by

their mass and redshift. That said, due to intrinsic scatter, measurement noise and

the very steep cluster mass function, one cannot naively invert eq.3.12 to obtain the

mass estimates. To correct such biases, a Bayesian analysis is required that accounts

for the underlying distribution of flux densities and makes reasonable assumptions

on the form of the posterior probabilities between the mass parameter m, the obser-

vation ỹ0
ob and the true SZ signal ỹ0

tr in the absence of noise [6]. In this work, we

13Uncorrected in the sense that it is associated with the fixed angular scale filter and does not
include a relativistic correction [6].

14Here t = −0.000848 × (mE(z))−0.585 according to the scaling relation provided in [50].

15Here B(k) and τ (θ′/θ) are respectively the product of the beam response with the map pixel
window function and the signal template at angular scale θ′ [6].
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Figure 3.4: The plot shows the response function used to reconstruct the cluster
central decrement as a function of cluster angular size. At θ500c = 5′.9, the filter is
perfectly matched and Q = 1. At scales slightly above 5′.9, Q > 1 because such profiles
have high in-band signal despite being an imperfect match to the template profile [6].

simply use the mass estimates of the ACT S18dn cluster sample obtained from this

analysis, previously performed by other members of the ACT collaboration. Figure

3.5 shows the M500c estimates of the 2,869 clusters in the sample as a function of

redshift z, and their respective distributions.

3.2.2 Purity and Completeness of the Survey

The selection function associated with the cluster finder algorithm and survey strat-

egy can be mainly characterized by two parameters: its completeness and its purity.

The completeness of a cluster catalog is defined as the fraction of galaxy clusters

correctly identified relative to the number of true dark matter halos. On the other

hand, the purity of the same catalog is defined as the fraction of galaxy clusters cor-

rectly identified relative to the total number of detected clusters [51]. Hence, a low
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Figure 3.5: The plot shows the mass (top left) and redshift (top right) distribution
of the 2879 clusters in ACT S18dn cluster catalog. The bottom plot simply maps all
the observed clusters in terms of their mass (in log scale) and redshift. The median
redshift and mass are respectively 0.49 and 2.49 ⋅ 1014M⊙. The lack of clusters at low
redshift (z < 0.2) is largely a selection effect, due to the angular size of such clusters
being similar to the CMB anisotropies [7].

completeness indicates an inefficiency of the cluster finder in detecting systems that

it should have detected, whereas a low purity indicates a high fraction of false posi-

tives in the sample [51]. It is clear then how the combination of these two factors can

strongly diminish the reliability of a survey cluster detection, if they are not properly

characterized. Completeness and purity rates can be expressed as a function of mass
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and redshift. Here, we parameterize them in terms of a flat 90% completeness mass

threshold Mthr
16 and an overall normalization factor encoded in the effective survey

area ∆Ωeff .

3.2.3 Least-squares Analysis

The computation of the cluster distribution dN
dz for the ACT S18dn sample consists

of determining a reasonable redshift bin size dz, counting the number of observed

clusters N in each bin and dividing this number by dz. The standard deviation σi in

each bin is then estimated as the square root of N divided by dz.

Oi =
N

dz
; σi =

√
N

dz
. (3.14)

Given the mass estimates, computed according to the method presented in Sec.3.2.1,

one can extract the cluster distribution above a specific mass threshold Mthr by simply

excluding all such clusters with M500c <Mthr from our count per bin. In Fig.3.6, we

show the ACT S18dn cluster sample distribution respectively for Mthr = [1; 2; 3; 4] ⋅

1014M⊙
17 and a total number of bins N = 12.

To compare the observed results with the ΛCDM model theoretical predictions

and estimate the value of σ8, we perform a least squares optimization between the

binned data and the theoretical function from eq.3.1 evaluated on the same N red-

shift bins with free parameters σ8, Mthr and ∆Ωeff . It is useful to emphasize the

importance of keeping these last two parameters free in order to reasonably model

the selection function effects and limit their ability to significantly bias the estimated

value of σ8.

16The mass above which the ACT S18dn cluster sample is 90% complete which in this case we
consider to be flat, hence redshift independent.

17Note that the first mass threshold in the brackets does not exclude any of the clusters detected by
ACT, as the observed cluster with lowest mass has M500c ≈ 0.96 ⋅ 1014M⊙.
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Figure 3.6: The figure shows the redshift distribution of the observed clusters from
the ACT S18dn sample for increasing mass thresholds. The values of Mthr reported
in the legend are given in units of 1014M⊙. The data points and associated error bars
for each of the N = 12 redshift bins are given by eq.3.14.

The fitting method of least squares used in this analysis consists of minimizing

the sum of the squares of the differences between the observed values Oi and the

expected values Ei from the model under consideration, in each of the N bins. This

method is based on the statistics of the Chi-square function χ2, defined as:

χ2 =
N

∑
i=1

(Oi −Ei)
2

σ2
i

, (3.15)

where σ2
i is the variance on the observations (see eq.3.14). A good fitted model is

one where the measured values on average deviate from the ones expected from the

model by their standard deviation σi, resulting in χ2 ≈ N . To be more precise, the

χ2 statistics is directly determined by the number of degree of freedom ν, defined

as the difference between the number of observations N minus the number of fitted

parameters M: ν = N −M. The χ2 distribution is skewed to the right with mean
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value µ = ν and standard deviation σχ2 =
√

2ν. Customarily in place of χ2, the

so-called “reduced” χ2
ν is used, simply defined as:

χ2
ν =

χ2

ν
, (3.16)

which basically consists of a normalized χ2, such that for a good fitted model one

would expect χ2
ν ≈ 1.

The results of this analysis are reported in the table below. The two models pre-

sented correspond, respectively, to the best fit considering the whole 3 dimensional

parameter space (f bf
1 ) and to the best fit for fixed σ8 = 0.8 (f bf

2 ). It is important to note

that since Mthr is regarded as the flat 90% completeness mass threshold, the data

are compared to the 90% of the total cluster count predicted by the theoretical model

under consideration.

f bf
1 is characterized by a considerably lower estimate of σ8, in contrast with the

mounting evidence which constrains σ8 ⪆ 0.8. This peculiarity seems to be non-

physical and strictly related to the assumption of taking the mass threshold to be

constant in redshift, a feature which can strongly affect the shape of the dN
dz in such

a way as to effectively bias the computation of σ8. Indeed, as shown in Fig.3.2,

when keeping everything else constant and up to a normalization factor, σ8 and Mthr

have competing roles in effecting the shape of the dN
dz , which can cancel out for

different combinations of σ8 and Mthr: a distribution with low σ8 and a high and flat

mass threshold, like the one characterizing f bf
1 , can have a similar shape of another

distribution characterized by a higher value of σ8 and a lower value of Mthr.

This motivates the introduction of another model f bf
2 which considers a more

realistic estimate of σ8. The fitted parameters for f bf
2 provide an effective survey area

which is approximately 1
7 of the total area inspected and a mass threshold which is
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Fitted Model σ8 Mthr [1014M⊙] ∆Ω [degrees2] χ2
ν ν

f bf
1 0.725 4.65 7792 0.8 8
f bf

2 0.8 3.85 2369 1.5 9

Table 3.1: The table shows the constrained parameters for the two fitting functions
found by χ2 minimization. Specifically, f bf1 corresponds to the best fitting function
considering the whole 3 dimensional parameter space, while f bf2 is the best fitting
function with fixed σ8 = 0.8. The last column ν identifies the number of degrees
freedom defined as the difference between the number of observations and the fitted
parameters. f bf2 has 1 degree of freedom more than f bf1 since σ8 is held fixed,
leaving only 2 free parameters instead of the 3 for f bf1 .

comparable to the survey-averaged 90% mass completeness limit at z=0.5, estimated

by the ACT collaboration at 3.8 ⋅ 1014M⊙.

Though the value of χ2
ν for f bf

2 is approximately twice that of f bf
1 , the models are

statistically indistinguishable. To show this, one has to look at their corresponding

χ2 values and where they place inside the χ2 distributions determined by the respec-

tive number of degrees of freedom of each model. Specifically, for f bf
1 χ2

bf1
= 13.5 and

for f bf
2 χ2

bf2
= 6.418. The difference between the two values ∆χ2 = 7.1 is within two

standard deviations of both distributions, hence we cannot claim to have any statis-

tically significant difference between the fitted models. This rather humdrum result

is a direct consequence of all the assumptions made in this analysis, specifically in

regards to the cluster survey selection function. We cannot treat this χ2 minimiza-

tion method as a mean to constrain any parameter in a statistically meaningful way

since it lacks a rigorous likelihood analysis which takes into account all the factors

that can impact the galaxy cluster statistics of the observed sky for a given survey.

Instead, one should look at this analysis just as a way to illustrate that the observed

data reconcile with the cosmological prediction suggested in the literature of σ8 ≈ 0.8

for reasonable estimates of a flat 90% completeness mass threshold Mthr and effective

survey area ∆Ωeff .

18Here the subscript bfi indicates the respective model for i ∈ {1,2}.
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Figure 3.7: The plots in the figure show a comparison between the redshift cluster
distributions of the raw data (dot-dashed line) and the two fitted models (solid-lines):
f bf

1 (bottom) and f bf
2 (top). For each plot, we also show the residuals (∆f bf) of the

measured cluster counts with respect to the two fitted models. The dotted red line
here represents the 0 value, hence no difference between the measured and fitted
values.
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Chapter 4

Raw Maps Stacking Analysis

In this chapter, we analyze the raw maps1 of the 2,869 clusters from the ACT S18dn

sample, averaging them over 5 specific mass and redshift ranges. The essence of this

stacking process is to investigate clusters’ properties and their dependence on redshift

and mass. The mass ranges are all equally spaced with width w = 1
5 ×(Mmax−Mmin) =

2.6 × 1014M⊙, where Mmax and Mmin represent respectively the highest and lowest

estimated mass for a cluster in the sample2. On the other hand, the redshift ranges

are determined by imposing the same number of clusters Nc in each of them.

This differentiation in the definition of the redshift stacking from the mass stack-

ing is made to ensure a proper statistics in the computation of the weighted average

cluster. In fact, when one considers only equally spaced bins for both the mass and

redshift, one finds that in both cases the highest bin contains only a few clusters.

Nevertheless, for the mass stacking case this does not cause an issue since, given the

approximately linear relationship between M500c and y, these clusters present very

deep potential wells that are easily discernible from the overall CMB noise, even

if the map is unfiltered. Instead, for the redshift stacking case, since the Compton

1By raw map it’s intended the unfiltered original map which still includes bright sources.

2Note, here the masses are taken as estimated by the process illustrated in Sec.3.2.1.
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y-parameter is theoretically independent of redshift, the only factor that plays a sig-

nificant role in the z-distribution is the hierarchical pattern of structure formation,

by which we expect clusters at high redshift to be generally smaller in size than those

at lower values of z. Hence, in this scenario, for a high redshift bin, one would have

to compute an average over a small number of very faint clusters which would not

produce a clear result, particularly taking into account that the map is unfiltered.

Provided these two sets of redshift and mass ranges, we extracted square patches of

side 30×30 arcmins centered on each cluster position from the all-sky ACT equatorial

map (Fig.1.3); and then stacked them together based on their redshift and mass 3.

The computation of the average cluster per mass and redshift bin is based on

an inverse-variance weighting, where each pixel value pj = ∆Tj in the map has an

associated weight wj given by the inverse of the variance:

wj =
1

σj2
. (4.1)

Hence, the jth pixel of the averaged cluster on a specific mass or redshift bin has

associated value and weight given by:

∆Tj,avg =
∑i=1 ∆Tj,i ⋅wj,i

∑i=1wj,i
; wj,avg = ∑

i=1

wj,i. (4.2)

If on one hand ∆Tj,avg is simply the result of a weighted average, wj,avg is given

by the sum of the single weights from all the clusters maps, strongly reducing the

uncertainty σj on each pixel value.

3The extracted square patches correspond to images of 60 × 60 pixels, as the resolution of the ACT
map is 0.5 arcminutes. Note that here we are making the implicit assumption that all the pixels have
the same size. This is not true since, for points off the celestial equator, one has to correct for the real
distance in R.A. which shrinks by a factor of cos(Dec). That said, given the central area of the ACT
survey and the small size of the square patches, the magnitude of these corrections is rather small
and we can thus neglect it for simplicity, without effecting significantly our results.
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Figures 4.1 and 4.2 show the result of this process respectively for the mass and

redshift stacking of the clusters extracted from the ACT temperature map at both 90

and 150 GHz.
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Figure 4.1: The images present the average clusters from the ACT dS18 dataset for 5
different mass ranges of width w = 1

5 ×(Mmax−Mmin) = 2.622×1014M⊙. Nc represents
the number of clusters on which the weighted average is computed in each mass
range. On the left, the frequency under consideration is 90 GHz; on the right, 150
GHz.
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Figure 4.2: The images present the average clusters from the ACT dS18 dataset for
5 different redshift ranges determined by imposing the same number of clusters Nc

in each of them. Specifically Nc = 574 for each range, apart from the last one which
has Nc = 572. On the left, the frequency under consideration is 90 GHz; on the right,
150 GHz.
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4.1 Testing Pressure Profiles

As thoroughly described in Chapter 3, we know that cosmological constraints derived

from galaxy cluster samples are generally limited by the accuracy of cluster selection

and mass-observable scaling relations. In particular, further progress in this area

requires that we develop an improved understanding of cluster pressure profiles, in-

cluding their dependence on the cluster mass, redshift and the expected form of the

scaling relations in terms of the choice of integration radius. The ACT S18dn cluster

catalog provides a great opportunity for this kind of investigation given the increase

of approximately one order of magnitude in the number of confirmed clusters com-

pared to previous datasets. In this section, we examine the two major pressure

profiles presented in Sec.2.2: (1) the Isothermal β model and (2) the Universal Pres-

sure Profile. The analysis consists in fitting such models using χ2-minimization (as

described in Sec.3.2.2) to the radial profiles of the average clusters calculated from

both the mass and redshift stacking procedure. It is important to emphasize that the

errors obtained on the best fitted parameters for each of the models under consider-

ation are purely statistical and a product of the χ2
ν minimization algorithm. Hence,

we simply report them as a measure to probe the model and we do not ascribe any

physical significance to them.

To obtain these radial profiles, the inverse-variance weighted averaging process

described earlier is repeated. The central decrements ∆T (θ) and their respective

uncertainties σ∆T are computed according to eq.4.2, where in this case the sum is

performed over all the pixels at dimensionless distance θ from the center, for θ that

goes from 0.5 to 15 arcmins in steps of 0.5 arcmins. Every profile is offset by the

average of the 5 most distant radial bins such that for large θ, ∆T → 0 regardless

of the mass or redshift range under consideration. This offsetting significantly sup-

presses the effect of the constant background noise from the surrounding region of

the cluster and allows an easier comparison between cluster profiles at different mass
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and redshift range. Finally, the sign of the thermal decrements is inverted to make

∆T (θ) positive and allow for a study of the cluster profiles in logarithmic scale and

investigate the multiplicative factors at each angular scale.

According to inverse-variance weighting statistics we know the error at each radial

bin θ is given by:

σ(θ) =
√

1/w(θ) =
√

1/∑
i

wi(θ), (4.3)

where wi(θ) corresponds to the weight at pixel i for all is at radial distance θ. Since

for larger radii θ we are averaging over a greater number of pixels then, as evidenced

by eq.4.3, σ(θ) is expected to initially decrease sharply as θ increases and then flatten

out at large radii. This effect is shown in Fig.C.1 for the average clusters radial profile

at 150 GHz stacked by redshift and it represents a very useful tool to verify that one

has done the right computation during the averaging procedure.

4.1.1 Beam Convolution

Though the ACT maps under consideration are unfiltered, one still needs to take

into account the bias introduced by the telescope point spread function, which acts

as a low-pass spatial filter on the astrophysical signal from the sky [9]. This can be

accomplished by convolving the theoretical models with the beam profile and prior

to their comparison with the data from the maps:

F(θ) = (B ∗ F )(θ) ≡ ∫
θ

0
F (τ)B(θ − τ)dτ, (4.4)

where B(θ), F (θ) and F(θ) are, respectively, the beam profile and the theoretical

model before and after the convolution, with the latter representing the function that

is ultimately compared to the data from the maps.

The profile of the beam can be modelled as a Gaussian filter of width equal to

the beam size which, as reported in Sec.1.3, is 2.1’ and 1.4’ respectively at 90 and 150
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Figure 4.3: The figure presents the ACT 150 GHz (dashed) and 90 GHz (dotted) Gaus-
sian beam characterized respectively by FWHM of 0.6 and 0.9 arcminutes. Shown for
reference, the normalized radial profile of the total average cluster from the whole
sample (solid).

GHz. To grasp a more graphic intuition on the relevance of the effects of the beam on

the measured signal, Figure 4.3 shows the radial profiles of the point spread function

at both 90 and 150 GHz in comparison with the normalized absolute average cluster

profile4.

4.1.2 The Isothermal β model

Given the linear relationship between the thermal decrements and the Compton y-

parameter as conveyed in eq.2.1, we can consider the Isothermal β profile for ∆T (θ)

to take on the same form as y(θ), up to a normalization factor. Hence, the fitting

4by absolute average cluster profile, we mean the profile obtained by averaging over every cluster
in the sample, regardless of its mass or redshift.
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function is expressed in its general form as:

∆T (θ) = δT0,β[1 + (
θ

θc
)

2

]

1
2
−

3β
2

+ c0,β, (4.5)

with δT0,β, θc, β and c0,β taken here as free parameters. c0,β is an additional con-

stant required to effectively discern any left over background noise level from the

estimate of the cluster profile peak and shape. δT0,β and θc represent, respectively,

the normalization factor and angular core radius, features which we expect to be

unique to the stacked group under consideration, specifically with higher values for

clusters in the higher mass range and lower redshift range. Conversely β, defined as

the ratio of the energy per unit mass in galaxies (µeσ2) to the energy per unit mass

in gas (kBTe), is generally taken as universal factor, approximately constant among

clusters. Its estimated average value has a large scatter, as low as 0.65 [52] to ∼ 1.3

[53], depending also on the nature of the observation between X-ray and SZE surveys

[54, 55].

In a preliminary analysis, we left β as a free parameter as done in previous

literature. As evidenced by the results in Table C.1, this leads to a large scatter in

the estimated value of β between stacking groups to which we cannot assign any

physical significance. Perhaps one may postulate that β has some sort of dependence

on the mass and/or redshift but the scatter still should not be so large nor oscillatory

5. Following these considerations, in the final analysis we held β fixed to the value

estimated for the total average cluster by the preliminary study, hence β = 0.9 at both

90 GHz and 150 GHz.

The results of this study are presented in Table 4.1 and shown visually in Fig-

ures 4.4 and 4.5, for both the mass and redshift stacking at 90 and 150 GHz. The

5For instance the maximum difference between two estimated values of β is ∆βmax = 1.3 between
the cluster profile with 0.6 ≤ z ≤ 0.7 and that with 0.0 ≤ z ≤ 0.3. The value of 1.3 is in itself the upper
bound on β obtained by the literature [53] which shows the inconsistency of this prediction.
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figures are separated in 3 rows, each of which includes a different metrics of compar-

ison between the obtained fits (solid lines in the figures) and the data (filled circles

with respective error bars). Specifically, the top-row contains a standard linear scale

comparison to provide a visual representation of the profiles shapes. Instead, the

mid-row contains a log scale comparison between the fits and the data both normal-

ized to 1 at their peaks. The combination of these two elements allows to discern and

visibly appreciate the multiplicative factors differences both in terms of the angular

radial distance θ and among the different profiles. Finally, the bottom-row contains

a comparison of the residuals (∆T dat −∆T pred), calculated as the difference between

the data and the best fits at each θ bin, for all the average clusters groups under

consideration. In the bottom-row, there is also an additional flat dotted red line at

∆T = 0, which helps to visually discern which data-points were underestimated or

overestimated by the fitted model. As a useful note to the reader, for the remainder

of the paper, in every plot and table that we include, unless otherwise specified, we

take M ≡M500c and report its values in units of 1014M⊙.

Overall, this model does not fit the data well. This is evident when looking at the

estimated values of χ2
ν which are both large in magnitude and highly variant between

the different stacking groups. This is particularly enhanced for the averaged clusters

scaled by redshift, which tend to present higher and more variant values of χ2
ν

compared to the corresponding clusters scaled by mass. A distinct feature that arises

from the plots in Figures 4.4 and 4.5 is the systematic underestimation of the central

peaks of the profiles. This is related to the nature of the β-model which is limited

in its ability to characterize cuspy profiles, given the approximately flat behaviour at

small radii (θ/θc ⋘ 1) expressed by the expansion to first order of eq.4.5.

The fact that this model is not an accurate representation of the data was not un-

expected. The β-model is very simple and based on three main assumptions (isother-

mality, spherical symmetry and hydrostatic equilibrium) which, as we discussed in
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Sec.2.2.2, can only apply in certain regimes. Hence, when one considers average

profiles of a large number of clusters like we do in this work, it is reasonable to

suppose that enough of them will present properties that are incompatible with the

β formalism 6, and consequently alter the overall profile to make it disagree with the

model predictions, at this level of accuracy.

The only exception to this trend is the average cluster profile for the highest

mass bin given by 11.4 ⋅ 1014M⊙ ≤ M500c ≤ 14.1 ⋅ 1014M⊙. In this case, the β-model

fits the data fairly well with χ2
ν = {1.3,2.1}, respectively, at 90 and 150 GHz, which

correspond to the smallest χ2
ν values among all the pressure profiles tested in this

work. That said, we do not ascribe any physical significance to this result which

can simply be explained by the extremely reduced statistics of the highest mass bin,

composed of only three clusters. In fact, according to the inverse-variance weighting

formalism (eq.4.2), we know that the relative errors on each radial profile are scaled

by a factor of
√
Nc, where Nc is the total number of stacked clusters within a specific

mass or redshift range. Hence, the error bars for the highest mass bin are minimum

twice as large relatively to those on any other range, strongly reducing the resulting

χ2
ν as expressed by eq.3.15.

Finally, by comparing the results in Table 4.1 and C.1, we can observe that by

fixing β, we resolve the physical properties of the angular core-radius θc which is

expected to be positively correlated to the mass of the cluster7 and negatively corre-

lated to redshift according to the inverse of the angular diameter distance DA(z) as

expressed in eq.2.5.

6e.g., relaxed and cool-cores clusters.

7The positive correlation between θc and the mass of the cluster M500c follows from combination
of (1) the positive correlation between the core radius rc and M500c as expressed by eq.2.18 and (2)
the definition of θc expressed in terms of rc: θc = rc/DA(z) ∝ rc.
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Mass Stacking δT0,β

[µK]
σδT0,β
[µK]

θc
[arcmin]

σθc
[arcmin]

c0,β

[µK]
σc0,β
[µK]

χ2
ν

Frequency 90 GHz
1.0 ≤M ≤ 3.6 60.1 1.0 0.9 - -0.8 0.1 22.7
3.6 ≤M ≤ 6.2 149.1 2.2 1.0 - -1.9 0.2 12.9
6.2 ≤M ≤ 8.8 289.5 6.1 1.5 0.1 -6.3 0.8 14.2
8.8 ≤M ≤ 11.4 417.1 8.0 1.8 0.1 -11.2 1.3 14.6
11.4 ≤M ≤ 14.1 626.1 6.3 1.7 - -18.5 1.0 1.3
Tot. Avg. 70.9 1.0 1.0 - -1.0 0.1 30.5

Frequency 150 GHz
1.0 ≤M ≤ 3.6 54.6 1.5 0.7 - -0.6 0.1 42.2
3.6 ≤M ≤ 6.2 133.9 2.3 0.9 - -1.5 0.2 13.0
6.2 ≤M ≤ 8.8 250.0 7.8 1.5 0.1 -5.4 0.9 33.3
8.8 ≤M ≤ 11.4 331.3 8.6 1.7 0.1 -7.1 1.2 16.1
11.4 ≤M ≤ 14.1 519.6 7.9 1.7 - -15.8 1.1 2.1
Tot. Avg. 63.4 1.4 0.8 - -0.7 0.1 47.7

Redshift Stacking δT0,β

[µK]
σδT0,β
[µK]

θc
[arcmin]

σθc
[arcmin]

c0,β

[µK]
σc0,β
[µK]

χ2
ν

Frequency 90 GHz
0.0 ≤ z ≤ 0.3 90.1 1.4 1.8 - -2.9 0.2 20.8
0.3 ≤ z ≤ 0.4 73.3 1.7 1.0 - -1.4 0.2 19.4
0.4 ≤ z ≤ 0.6 65.5 1.1 0.9 - -0.6 0.1 7.5
0.6 ≤ z ≤ 0.7 73.2 3.2 0.5 - -0.5 0.1 12.5
0.7 ≤ z ≤ 1.9 77.1 4.2 0.5 - -0.6 0.1 14.6
Tot. Avg. 70.9 1.0 1.0 - -1.0 0.1 30.5

Frequency 150 GHz
0.0 ≤ z ≤ 0.3 72.7 1.7 1.8 0.1 -2.0 0.2 38.2
0.3 ≤ z ≤ 0.4 64.6 2.4 0.9 - -1.1 0.2 34.1
0.4 ≤ z ≤ 0.6 60.7 1.3 0.7 - -0.5 0.1 6.9
0.6 ≤ z ≤ 0.7 76.7 9.0 0.4 0.1 -0.7 0.2 52.4
0.7 ≤ z ≤ 1.9 79.7 7.3 0.4 - -0.7 0.1 28.1
Tot. Avg. 63.4 1.4 0.8 - -0.7 0.1 47.7

Table 4.1: The two tables contain a report of the best fits of the Isothermal β model as
expressed in eq.4.5, to the average clusters profiles stacked by mass (top) and redshift
(bottom) at both 90 and 150 GHz. For each fit, the tables include the estimated values
for the free parameters (δT0,β, θc, c0,β), their respective statistical errors (σδT0,β , σθc ,
σc0,β ) and the resulting χ2

ν . All quantities are reported with precision to 1 decimal
place. As a convention, the dash − in the tables replaces the statistical errors on fitted
parameters that round to 0.0 to 1 decimal place.
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Figure 4.4: The plots in the figure show the best fits of the Isothermal β model with
respect to the ∆T radial profiles of the average clusters stacked by mass at both 90
(top) and 150 (bottom) GHz. Each plot is separated in 3 rows following the convention
established in Sec.4.1.2. The legend on the top right identifies each mass range and
their corresponding number of clusters Nc, associating to each of them a color which
is kept the same along the 3 rows.
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Figure 4.5: The plots in the figure show the best fits of the Isothermal β model with
respect to the ∆T radial profiles of the average clusters stacked by redshift at both 90
(top) and 150 (bottom) GHz. Each plot is separated in 3 rows following the convention
established in Sec.4.1.2. The legend on the top right identifies each redshift range
and their corresponding number of clusters Nc, associating to each of them a color
which is kept the same along the 3 rows.
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4.1.3 The Universal Pressure Profile (UPP)

As we did for the Isothermal β model, also in the context of the UPP, it is useful

to exploit the linear relationship between the Compton y-parameter and the thermal

decrements to obtain a fitting function for the latter. As we briefly mentioned at the

end of Sec.2.2.3, in the UPP framework there is no analytical form expressing y(θ)

which remains simply defined as the integral of the pressure profile along the line

of sight. Hence, the fitting function for ∆T (θ) takes the general form:

∆T (θ) = δT0,a∫

∞

θ

s
√
s2 − θ2

P(s)ds + c0,a, (4.6)

where P(θ) is the normalized GNFW pressure profile:

P(θ) =
1

(c500x)γ[1 + (c500x)α]
β−γ
α

, (4.7)

with x = θ/θ500c and [c500, α, β, γ] = {1.177,1.0510,5.4905,0.3081} as determined by

Arnaud et al. in [4]. The free parameters in this model are δT0,a, θ500c and c0,a,

which are equivalent to δT0,β, θc and c0,β from the fitting function of the Isothermal

β Model. That said, though both θ500c and θc specify the angular distance associated

with the size of a cluster, they are defined in terms of two different physical scales,

namely R500c and rc, respectively defined in Sec.2.1.1 and 2.2.2.

It is important to emphasize that in deriving the fitting function for ∆T (θ) in

eq.4.6, we are disregarding the direct dependence of the pressure profile on the mass

and redshift of a cluster, empirically derived by Arnaud et al. in [4] and shown in this

paper in eq.2.22. This assumption is motivated by the fact that here we are interested

in the fitting function for the radial profile of an averaged cluster within a certain

mass and redshift range. Hence, the direct dependence on the mass and redshift of
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the cluster profile is washed out by the averaging process and can be considered to

be fully encapsulated by the normalization factor δT0,a.

The results of this analysis are presented in Table 4.2 and shown visually in

Figures 4.6 and 4.7, for both the mass and redshift stacking at 90 and 150 GHz.

Similarly to what we did with the β-model study, the figures are again separated in 3

rows, which contain the equivalent metrics of comparison between the obtained fits

(dashed lines) and the data (filled circles with respective error bars) defined earlier.

The only differentiation is in the scaling of the angular radial distance θ which, for

both the mid and bottom row, is expressed in log scale as a fraction of the estimated

θ500c (log(θ/θ500c)). This is done in order to visually highlight the multiplicative

factors that characterize the fall off of the ∆T profile as it approaches θ500c.

Though some of the obtained χ2
ν are still very high, the UPP generally fits the

data better than the β-model and is more consistent in its predictions. The variance

between the estimated χ2
ν for different average clusters profiles is strongly reduced,

with most of them ≲ 10. As already noted in regards to the β-model, also the UPP

fits perform significantly worse when applied to averaged clusters scaled by redshift

instead of mass. This can be explained by the combination of 2 factors: (1) the

more direct relation between the mass of a cluster and its profile shape, expressed

in both eq.4.6 and 4.5 through the dependence respectively on θ500c and θc; (2) the

approximately flat redshift distribution of the ACT clusters with respect to their mass,

which implies that when we average over any redshift bin, we include a rich array

of masses. In contrast with what we observed for the β model, the distinct feature

that arises from the plots in Figures 4.6 and 4.7 is a systematic overestimation of the

central peaks of the profiles. This seems to be directly related to the approximately

singular behaviour predicted by the UPP at small radii (θ/θ500c ⋘ 1), as expressed

in eq.4.6.

58



An interesting result comes again from the average cluster profile at the highest

mass bin given by 11.4 ⋅1014M⊙ ≤M500c ≤ 14.1 ⋅1014M⊙. For this particular range, the

UPP does not fit the data well with an estimated χ2
ν at least twice as large compared to

those for all the other mass ranges considered. This outcome is hard to be explained

without suggesting a possible limitation in the UPP model considered in this work

when applied to extremely massive clusters (M500c ∼ 1015 ⋅M⊙). In fact, on a statistical

standpoint, if the model works well for all the other mass ranges, one would expect it

to work equally good or better also for the highest mass bin, considering its extremely

reduced statistics which results in larger error bars relatively to those at any other

range. The most problematic assumption, implicit in the expression of the UPP

model from eq.4.6, is the exclusion of the direct dependence of the pressure profile

on the mass. This assumption was motivated on the basis of an averaging process

between a large number of clusters, within a finely binned mass range. The highest

mass bin from our sample only contains 3 clusters of highly variant mass estimates,

so this assumption is clearly not valid, which explains the poorness of the fit obtained

for this particular mass range.

Finally, the estimated values of θ500c generally agree with the physical expecta-

tions: for a higher mass and redshift range, we get respectively a larger and lower

estimate of θ500c, within the statistical error provided 8.

8One may note that at both 90 and 150 GHz, the value of θ500c obtained for the highest mass
bin (11.4 ⋅ 1014M⊙ ≤ M500c ≤ 14.1 ⋅ 1014M⊙) is slightly lower than that for 8.8 ⋅ 1014M⊙ ≤ M500c ≤
11.4 ⋅ 1014M⊙. However this difference is still within the statistical error (±σθ500c ) provided for both
quantities; hence it should not be regarded as evidence for a potential flaw in the model itself.
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Mass Stacking θ500c

[arcmin]
σθ500c

[arcmin]
δT0,a

[µK]
σδT0,a
[µK]

c0,a

[µK]
σc0,a
[µK]

χ2
ν

Frequency 90 GHz
1.0 ≤M ≤ 3.6 14.0 0.3 14.6 0.3 -0.3 0.1 11.9
3.6 ≤M ≤ 6.2 16.2 0.3 34.4 0.5 -0.7 0.2 4.8
6.2 ≤M ≤ 8.8 25.6 0.6 58.9 0.9 -5.8 0.5 2.8
8.8 ≤M ≤ 11.4 31.7 0.8 80.3 1.2 -13.3 1.1 3.2
11.4 ≤M ≤ 14.1 28.3 1.6 125.9 4.3 -17.1 3.2 5.6
Tot. Avg. 15.1 0.3 16.8 0.2 -0.4 0.1 13.5

Frequency 150 GHz
1.0 ≤M ≤ 3.6 10.9 0.3 14.6 0.3 -0.2 0.1 17.2
3.6 ≤M ≤ 6.2 13.9 0.3 33.3 0.5 -0.4 0.1 5.1
6.2 ≤M ≤ 8.8 26.2 0.9 53.3 1.2 -5.2 0.7 8.0
8.8 ≤M ≤ 11.4 31.7 1.4 66.8 1.8 -9.4 1.3 6.5
11.4 ≤M ≤ 14.1 29.5 2.3 110.1 5.4 -15.1 3.6 8.6
Tot. Avg. 12.2 0.3 16.4 0.3 -0.2 0.1 16.4

Redshift Stacking θ500c

[arcmin]
σθ500c

[arcmin]
δT0,a

[µK]
σδT0,a
[µK]

c0,a

[µK]
σc0,a
[µK]

χ2
ν

Frequency 90 GHz
0.0 ≤ z ≤ 0.3 32.0 1.4 17.5 0.4 -3.2 0.4 20.0
0.3 ≤ z ≤ 0.4 14.5 0.7 18.0 0.6 -0.7 0.2 18.2
0.4 ≤ z ≤ 0.6 14.7 0.4 15.5 0.3 -0.1 0.1 5.6
0.6 ≤ z ≤ 0.7 7.6 0.3 21.0 0.7 -0.1 0.1 5.3
0.7 ≤ z ≤ 1.9 7.3 0.4 21.6 1.0 -0.4 0.1 10.5
Tot. Avg. 15.1 0.3 16.8 0.2 -0.4 0.1 13.5

Frequency 150 GHz
0.0 ≤ z ≤ 0.3 32.4 1.6 14.9 0.4 -2.3 0.3 24.8
0.3 ≤ z ≤ 0.4 12.2 0.7 17.2 0.8 -0.5 0.2 26.7
0.4 ≤ z ≤ 0.6 10.0 0.2 16.5 0.3 -0.1 0.0 2.5
0.6 ≤ z ≤ 0.7 5.8 0.5 23.2 2.0 -0.6 0.1 30.2
0.7 ≤ z ≤ 1.9 5.7 0.4 23.2 1.5 -0.5 0.1 18.4
Tot. Avg. 12.2 0.3 16.4 0.3 -0.2 0.1 16.4

Table 4.2: The two tables contain a report of the best fits of the Universal Pressure
Profile as expressed in eq.4.6, to the average clusters profiles stacked by mass (top)
and redshift (bottom) at both 90 and 150 GHz. For each fit, the tables include the
estimated values for the free parameters (θ500c, δT0,a, c0,a), their respective statistical
errors (σθ500c , σδT0,a , σc0,a) and the resulting χ2

ν . All quantities are reported with
precision to 1 decimal place.
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Figure 4.6: The plots in figure show the best fits of the UPP model with respect
to the ∆T radial profiles of the average clusters stacked by mass at both 90 (top)
and 150 (bottom) GHz. Each plot is separated in 3 rows following the convention
reestablished in Sec.4.1.3 . The legend on the top right identifies each mass range
and their corresponding number of clusters Nc, associating to each of them a color
which is kept the same along the 3 rows.
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Figure 4.7: The plots in figure show the best fits of the UPP model with respect to
the ∆T radial profiles of the average clusters stacked by redshift at both 90 (top)
and 150 (bottom) GHz. Each plot is separated in 3 rows following the convention
reestablished in Sec.4.1.3. The legend on the top right identifies each redshift range
and their corresponding number of clusters Nc, associating to each of them a color
which is kept the same along the 3 rows.
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4.2 Linear Polarization

In addition to a thermal spectral distortion, the SZ effect is also expected to induce

linear polarization in the CMB. The SZE polarization comes entirely from the the

presence of a quadrupole component in the of the local radiation field experienced

by the scattering electrons [3]. This quadrupole anisotropy is mostly inherent to the

CMB radiation itself, or induced by the motion of the cluster with respect to the CMB

[56].

If we could obtain polarization measurements for a large number of clusters on

a finely binned redshift range, we could potentially trace the evolution of the CMB

quadrupole and use that to make several tests on the cosmology of the Universe,

such as on its homogeneity [57] or on the nature of dark energy9 [58]. The non-

relativistic SZ effect polarization signal for a massive cluster with optical depth τe ≈

0.01 is expected to be ∼ 0.1µK [3], which is still below the detection limit of current

instruments by approximately an order of magnitude. That said, as commented in

[59] one can overcome such limitation by averaging polarization signals from a large

number of clusters. This corresponds exactly to the nature of the stacking analysis

described in this chapter where the average is taken among all the observed clusters

in our catalog at a specific redshift and mass range.

Hence here, to investigate whether or not there is a detectable net polarized

signal from the average cluster per mass and redshift bin, one must compute the

radial profiles of the linear polarization P , by applying the same inverse-variance

weighted averaging procedure presented in the introductory section of this chapter10.

9By performing such study, the presence of the Integrated Sachs-Wolfe (ISW) effect, which is
strongly dependent on the background cosmology and hence on the nature of dark energy, can be
statistically established and its redshift dependence contribution to the r.m.s. quadrupole determined
[56].

10It is useful to recall here that the methodology used throughout this work to obtain the finalized
radial profiles with their associated error bars involves two distinguished weighted averaging steps:
(1) the stacking of the 30 × 30 arcmins square patches centered on the clusters for each redshift and
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The procedure is performed on the P maps whose signal and weights are fully

determined by the Stokes parameters Q and U polarization maps.

Before moving on with this study, it is useful to look at the radial profiles for

the single Q and U polarization maps. In fact, even if we detect a distinct total

polarization P coming from the clusters, the radial profiles of the single Stokes

parameters Q and U should still act like pure noise with mean value zero. This is

because, if there is an axis of polarization, one expects that to be random among

the class of clusters analyzed. Hence, since Q and U are coordinate dependent, their

weighted average around many distinct points in the sky, which here correspond to

the clusters positions, should tend to zero. This is also a useful test for systematic

errors in the map, which in this case would manifest as a non-zero baseline level.

Figure 4.8 shows the radial profiles of Q and U at both 90 and 150 GHz, computed

for the clusters stacked by redshift11. It is important to note that in calculating these

profiles, the weights on both the Q and U maps are taken to be the same as those

from the thermal map. As expected, the Stokes parameters oscillate around the zero

value with a scatter for both U and Q ≲ 1µK. To verify this quantitatively, we fit using

χ2 minimization a flat line of the form f(θ) = b, where b is a constant representing

the baseline. For all the Q and U radial profiles considered, the best fit is given

by b = 0.0 with corresponding χ2
ν ∼ 2, minimum value 1.0 and maximum at 4.2.

The extensive list of all the computed χ2
ν for the radial profiles of Q and U under

consideration is reported in Table C.2 for the interested reader.

mass bin; (2) the averaging of all the pixels at dimensionless distance θ from the single stacked 30×30
arcmins square patches associated to each mass and redshift group.

11In a similar fashion, one can analyze the Q and U radial profiles with respect to the mass stacking
subdivision. The results should be equivalent with the only differences arising form the different
statistics of each stacking group. Hence, in an effort to avoid being prolix, we do not include this in
the discussion. The redshift stacking is preferred purely for graphing purposes since, given the equal
number of clusters in each subgroup, the scatter between the maximum and minimum value for Q
and U is reduced.
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Figure 4.8: The 2 plots in the figure show the radial profiles of the Stokes parameters
Q and U for the clusters groups stacked by redshift at both 90 (top) and 150 (bottom)
GHz. Each plot is separated in three row. The top-row and mid-row contain the
radial profiles of all the clusters groups analyzed respectively for U (top-row) and Q
(mid-row). The bottom row instead shows a comparison between the total average
profile of Q and U and contains an additional flat dotted red line at Q = U = 0. The
legend on the top right identifies each redshift range, associating to each of them a
color which is kept the same along the top and mid rows.
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Having verified the absence of a non-negligible baseline level in the Q and U

polarization maps, we are now ready to return to the study of the total linear polar-

ization P .

The signal P is defined in terms of Q and U by equation 1.11, its corresponding

weights wP are also specified by this relation according to the standard rules of error

propagation12 and the definition of inverse-variance weighting (see eq.4.1), such that:

since wQ = wU = wT , by eq.4.1→ σQ = σU = σT

given eq.1.11, by err. prop. rules→ σP = σT (4.8)

by eq.4.1→ wP = wT . (4.9)

Hence, similarly to the Q and U maps, also the P map has weights equal to those of

the thermal map.

Now, since P is given by the quadrature addition of Q and U , its averaged radial

profiles will include a rather large constant baseline level which has no physical

significance with respect to our investigation. Therefore, in order to resolve the

relatively small net polarized signal, it is crucial to subtract this mean noise level

to each of the finalized average radial profiles. The resulting profiles of the linear

polarization P after mean subtraction are shown in Figure 4.9 for both the mass and

redshift stacking at 90 and 150 GHz. The outcome is evident: we observe no net

polarization signal neither for the clusters averaged over mass range, nor for those

averaged over redshift range. To verify this quantitatively, as we did for the Stokes

parameters Q and U , we can fit to each of the profiles a flat line of the form f(θ) = b.

12Specifically, we used the summation and power rule which state that:

for Z =X + Y Ð→ σ2
Z = σ2

X + σ2
Y

for Z =Xn and n ∈ QÐ→ σZ
Z

= n ⋅ σX
X
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Stacking Group χ2
ν (90 GHz) χ2

ν (150 GHz)
0.0 ≤ z ≤ 0.3 1.2 1.3
0.3 ≤ z ≤ 0.4 0.9 2.1
0.4 ≤ z ≤ 0.6 0.8 1.8
0.6 ≤ z ≤ 0.7 1.0 1.9
0.7 ≤ z ≤ 1.9 1.1 1.2

1.0 ≤M ≤ 3.6 0.9 1.4
3.6 ≤M ≤ 6.2 1.0 1.3
6.2 ≤M ≤ 8.8 1.4 1.7
8.8 ≤M ≤ 11.4 1.0 2.0
11.4 ≤M ≤ 14.1 1.4 2.1

Tot. Avg. 1.1 1.3

Table 4.3: The table contains a report of the χ2
ν obtained by fitting a flat line of the

form f(θ) = 0 to the P radial profiles for all the clusters groups stacked both by
redshift and mass at 90 (inner-column) and 150 GHz (outer-column). Overall, χ2

ν ∼ 1
for approximately all the stacking groups considered, with only a few exceptions
which present values of χ2

ν ∼ 2, to not be considered as a statistically significant
variation. All quantities are reported with precision to 1 decimal place.

If there is no net polarization and hence the signal is characterized as pure noise with

mean 0, then we expect the best fitting function to have b = 0.0 and corresponding

χ2
ν ≈ 1. This expectation is matched by the results of the χ2 minimization algorithm

which for all profiles provides the best fit at b = 0 and χ2
ν ∼ 1, with maximum value at

2.1 and minimum at 0.8 (refer to Table 4.3 for the extensive list). This confirms the

absence of a discernible linear polarization signal arising from clusters as evidenced

by Fig.4.9.
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Figure 4.9: The 2 plots in figure show the radial profiles of the linear polarization
P for the clusters groups stacked by both redshift and mass at 90 (top) and 150
(bottom) GHz. Each plot is separated in 2 rows respectively representing the stacking
by redshift (top-row) and mass (bottom-row). The legend on the top right of both
identifies each mass and redshift range, associating to them a color which is kept the
same along the top and bottom plot.
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4.3 Planck clusters in the ACT S18dn equatorial map

Figure 4.10: The figure shows a comparison of the ACT S18dn cluster sample in the
(mass, redshift) plane with the PlanckSZ2 (PSZ2) catalog[1]. In yellow, we evidenced
the 525 clusters observed by Planck that are in the overlapping field of the two
experiments but were not detected by ACT.

The all-sky Planck Satellite cluster survey (PlanckSZ2) differs notably from the

corresponding ground-based surveys, such as ACT and SPT, specifically in terms

of angular resolution, available frequency channels and sky coverage. The Planck

CMB maps are mainly free from astrophysical emission and are thus considered

a good representation of the statistical instrumental noise [60]. Conversely, for a

ground-based experiment like ACT, the noise properties can vary significantly due to

changes in the atmospheric conditions that can result in spatial variations at large

angular scales. On the other hand, ACT presents a higher angular resolution at ∼ 1

arcmin level compared to ∼ 5 arcmin for the highest Planck frequencies. The higher

resolution of ACT allows to detect SZ clusters and characterize their pressure profiles

on smaller angular scales. Similarly, the extensive multi-frequency coverage and the
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absence of atmospheric noise of Planck allows access to larger angular scales clusters

which are instead filtered out in ground experiments like ACT [60].

Figure 4.10 evidences the complementarity between the ACT S18dn and

PlanckSZ2 sample: ACT S18dn presents clusters at lower mass and higher red-

shift since they correspond to a smaller angular scale; PlanckSZ2 presents clusters

at lower redshift which correspond to larger angular sizes. It becomes clear then

the combination of ACT and Planck data would provide a more complete picture of

the total distribution of clusters in the Universe. Hence a combined survey offers

a unique opportunity to improve on the study of the intra-cluster pressure profiles

and potentially extrapolate tighter constraints on cosmological parameters.

PlanckSZ2 contains 1,653 detections, of which 1,094 are confirmed clusters with

assigned mass M500c and redshift. Within this verified catalog, there are 525 clusters

in the overlapping region with the ACT S18dn field that were not detected by the

ACT experiment13.

The primary goal of this section is simply to verify if these undetected 525 Planck

clusters can be resolved in the unfiltered ACT S18dn equatorial map. To do this,

we apply the same averaging formalism used throughout this chapter, and stack the

30×30 arcmins square patches from the ACT maps centered on the 525 Planck clusters

over 3 mass ranges14. Similarly to what we did for the ACT S18dn catalog, here the

mass ranges are equally spaced with width w = 1
3(Mmax−Mmin) = 3.7×1014M⊙, where

Mmax and Mmin represent respectively the highest and lowest estimated mass from

the Planck clusters. The result of this process is shown in Figure 4.11. The immediate

observation is that when stacked on top of each other, the Planck clusters become

13the ACT S18dn and PlanckSZ2 catalog have 28 clusters in common which are not considered in
this analysis.

14The maps taken into account are both the thermal and polarization maps at 90 and 150 GHz.
Moreover the position and respective masses and redshifts of all the Planck clusters are taken from
the public dataset of PlanckSZ2 survey available at [1].
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clearly visible in the ACT temperature map at both 90 and 150 GHz, with noise levels

comparable to the original ACT S18dn sample.

Figure 4.11: The images present the average clusters from the PlanckSZ2 dataset
for 3 different mass ranges of equal width w = 1

3(Mmax −Mmin) = 3.7 × 1014M⊙. Nc

represents the number of clusters on which the weighted average is computed in each
mass range. On the left, the frequency under consideration is 90 GHz; on the right,
150GHz. Note that we only consider here the PlanckSZ2 clusters in the overlapping
region with the ACT S18dn that were not detected by the ACT collaboration.

It is important to emphasize that the mass estimates of these clusters are those

computed by the Planck collaboration whose model template, though still based on

the UPP, differs from that used by the ACT collaboration and described in Sec.3.2.1.

The details of this method are of no interest for the purpose of this work since the

estimated masses are only used to determine the stacking measure; for the curious

reader, we suggest to refer to [38] and [61]. Finally, in this analysis we disregard the
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redshift stacking. This is mainly a pictorial choice for immediate physical pleasure.

In fact, as evidenced by the study on the ACT S18dn catalog, in contrast with the

average profiles scaled by mass, there is a significantly smaller variability among

those scaled by redshift, which makes them harder to be differentiated on a purely

graphic level. This is just the consequence of the more direct correlation between

the estimated mass of a cluster and its intrinsic properties, manifested here in terms

of the induced central thermal decrements in the CMB map and the overall profile

shape.

Following the same methodology undertaken for the analysis of the entire ACT

S18dn catalog, in the following subsections we examine the Planck clusters to: (1) test

the predictions of the Isothermal β model and Universal pressure profile by looking

at the thermal radial profiles of the average clusters per mass bin (2) investigate

whether or not there is a detectable net polarized signal coming from the clusters by

computing the radial profiles of the linear polarization P .

4.3.1 Testing Pressure Profiles

Given the radial profiles of the mass scaled average clusters computed according

to the formalism presented in Sec.4.1, we can test them through χ2 minimization

on the two major cluster pressure profile models under consideration, namely the

Isothermal β model and the Universal Pressure Profile.

For the Isothermal β model, we use the same fitting function from eq.4.5 with

δT0,β, θc and c0,β taken as free parameters and β fixed at 0.9 for both the 90 and

150 GHz map 15. Similarly, to test the Universal Pressure Profile, we use the same

fitting function from eq.4.6 with free parameters δT0,a, θa and c0,a. The results of

this analysis are shown in Table 4.4 and 4.5 and Figures 4.12 and 4.13, respectively,

15This value corresponds to that estimated for the total average cluster in the ACT S18dn sample, in
the preliminary study where β was left free.
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for the maps at 90 at 150 GHz. Each of the 2 figures is separated in 5 rows. The

top row simply contains the radial profiles from the data in standard linear scale.

The 2nd and 3rd row are dedicated to the comparison between the data and the fits

from the β model respectively containing: (2nd-row) the radial profiles of the data and

corresponding best fits normalized to 1 at their peak and put in log scale; (3rd-row) the

residuals between the data and corresponding fits (∆T dat−∆T pred) with the additional

flat dotted red line at ∆T = 0 as done for the analysis of the ACT clusters. Finally, the

last two rows follow the same structure and are instead dedicated to the comparison

between the data and the fits from the UPP model. The only differentiation, as done

for the ACT clusters, is again in the scaling of the angular radial distance θ which

in these last two rows is expressed in log scale as a fraction of the estimated θ500c

(log(θ/θ500c)).

Overall for this study, the β model fits the data fairly well, with all the values

of χ2
ν ≲ 10 and minimum χ2

ν = 1.2. That said, the estimated values of the angular

core-radius θc decrease as one increases the value of the mass bin, which is gener-

ally an nonphysical result if the clusters in each mass bin are approximately evenly

distributed in redshift. However, as one can clearly observe from Figure 4.14, the

masses and corresponding redshifts of the undetected PLanckSZ2 clusters are posi-

tively correlated, introducing an important selection effect which may account for

the unexpected shrinking of θc for the clusters in the higher mass ranges.

Conversely to what we observed for the ACT clusters, here the UPP generally

performs worse than the β model, providing extremely high values of χ2
ν ∼ 102. This

differentiation is particularly enhanced for the average clusters profiles of the two

lower mass bins. The distinctive feature of these two profiles is the combination of a

very long tail with relatively low peak, that then results in physically unreasonable

estimates for UPP fitted parameters, suggesting perhaps a limitation of this model

when used to describe light clusters with very large angular sizes. Indeed, when
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one considers the average cluster from the highest mass bin, which does not present

this distinctive elongated tail, then the UPP performs much better and comparably

to what we obtained for the two highest mass ranges from the ACT sample, with

χ2
ν ≲ 10.

With all this said, the essence of this profile analysis is not to make any conclusive

argument on the flaws of the UPP and/or on the nature of the correct pressure profile

to use. There are many elements that we are neglecting for simplicity and that could

strongly impact the statistical significance of our fitted models 16. Hence, all we can

really claim is the evident distinction between the average profiles on the two lower

mass bins from the undetected PlanckSZ2 clusters compared to all the other profiles

presented in this work. This contrast is emphasized even more in Figure 4.14 where

we compare the profiles from the undetected PlanckSZ2 clusters with the ACT S18dn

clusters sample stacked over the same 3 mass ranges.

The average clusters on the lowest mass bin diverge at almost all scales, with the

the PlanckSZ2 cluster characterized by both a smaller peak and longer tail. For the

second mass bin, the profiles agree for θ ≥ 5 arcmin and only diverge significantly in

the core, with the PlanckSZ2 cluster identified again by a smaller peak. Overall, these

two PlanckSZ2 clusters groups seem to perfectly pertain to the class of objects with

low mass and large angular size that tend to be filtered out in ground experiments

like ACT. On the other hand, as clearly shown in Fig.4.14, the average clusters profiles

on the highest mass bin are much more coherent with only small differences that,

given the low statistics of the average, can be considered to be negligible. This is

also very interesting in itself, because one may ask why clusters with such similar

features that seem to be in the ACT resolution range were not detected.

16e.g., the different mass calibration between the two experiments, the noise in the map coming
from bright sources, the use of a simplified version of the UPP without the direct mass dependence,
etc.
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We must recall, as we mentioned at the very beginning of this thesis, the ACT

S18dn dataset studied here is only a preliminary version but, if it will be confirmed,

being able to explain the nature of these exclusions will become more pressing and

may involve non negligible differences in the mass calibration between the two ex-

periments or inaccurate estimates of the completeness of the survey.
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Figure 4.12: The plots in the figure show the best fits of the β-model (2nd-3rd row) and
of the UPP (4nd-5rd row) with respect to the ∆T radial profiles from the undetected
PlanckSZ2 clusters stacked by mass at 90 GHz. The legend on the top right identifies
each mass range and their corresponding number of clusters Nc, associating to each
of them a color which is kept the same along the 5 rows. The performance of the
fits can be evaluated by looking at the plots of the residuals (3rd and 5th row) which
are approximately flat for the β-model and evidently oscillatory for the UPP, which
overall seems to overestimate the core and underestimate the tail of the profiles.
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Figure 4.13: This plot is equivalent to that in Figure 4.12 for the map at 150 GHz.
Overall the results are in line with what is shown in the previous figure, with the
common tendency of obtaining slightly worse fits at this frequency.
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Figure 4.14: The plot shows a comparison of the average cluster profiles stacked
over the same mass range between the ACT S18dn catalog and the 525 undetected
PlanckSZ2 (PSZ2) clusters. The PSZ2 and ACT profiles are respectively in shades of
red and green, with the lightest shade corresponding to the lowest mass bin and
the darkest shade to highest mass bin. The legend on the top right identifies each
mass range and their corresponding number of clusters Nc for both the ACT and
PSZ2 sample. Finally on the bottom, we plot the residuals defined as the difference
between the ACT and PSZ2 profiles at each θ bin for all the 3 mass ranges under
consideration. Each of the residuals profiles is labeled with the same color of the
corresponding ACT cluster profiles of the top plot.
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Mass Stacking δT0,β

[µK]
σδT0,β
[µK]

θc
[arcmin]

σθc
[arcmin]

c0,β

[µK]
σc0,β
[µK]

χ2
ν

Frequency 90 GHz
1.1 ≤M ≤ 5.1 68.8 1.1 3.4 0.1 -7.3 0.5 11.5
5.1 ≤M ≤ 9.1 158.3 0.7 2.2 - -7.6 0.2 1.9
9.1 ≤M ≤ 13.1 420.3 3.1 1.5 - -10.0 0.4 1.2
Tot. Avg. 108.1 0.9 2.6 - -7.1 0.3 8.8

Frequency 150 GHz
1.1 ≤M ≤ 5.1 54.7 1.0 3.4 0.1 -5.7 0.4 12.4
5.1 ≤M ≤ 9.1 121.1 2.0 1.9 - -5.0 0.3 14.5
9.1 ≤M ≤ 13.1 352.4 7.8 1.5 - -6.2 0.9 7.8
Tot. Avg. 83.3 1.0 2.4 - -4.9 0.2 11.8

Table 4.4: The table contains a report of the best fits of the Isothermal β model as ex-
pressed in eq.4.5, to the average clusters profiles from the 525 undetected PlanckSZ2
clusters stacked by mass at both 90 and 150 GHz. For each fit, the table includes the
estimated values for the free parameters (δT0,β, θc, c0,β), their respective statistical
errors (σδT0,β , σθc , σc0,β ) and the resulting χ2

ν . All quantities are reported with pre-
cision to 1 decimal place. The dash − in defined according to the same convention
expressed in the caption of Table 4.1.

Mass Stacking θ500c

[arcmin]
σθ500c

[arcmin]
δT0,a

[µK]
σδT0,a
[µK]

c0,a

[µK]
σc0,a
[µK]

χ2
ν

Frequency 90 GHz
1.1 ≤M ≤ 5.1 63.9 21.3 12.0 1.6 -8.1 3.5 126.2
5.1 ≤M ≤ 9.1 40.8 4.5 29.4 1.6 -9.1 2.1 79.6
9.1 ≤M ≤ 13.1 22.9 1.1 89.6 2.8 -6.9 1.5 9.3
Tot. Avg. 48.5 7.9 19.6 1.5 -8.5 2.3 178.3

Frequency 150 GHz
1.1 ≤M ≤ 5.1 70.2 33.3 10.2 1.8 -7.0 4.0 154.8
5.1 ≤M ≤ 9.1 29.8 3.7 26.2 2.0 -4.3 1.4 116.2
9.1 ≤M ≤ 13.1 26.8 1.9 74.5 3.4 -5.8 2.0 14.0
Tot. Avg. 44.1 8.2 16.6 1.5 -5.7 1.9 210.5

Table 4.5: The table contains a report of the best fits of the Universal Pressure
Profile as expressed in eq.4.6, to the average clusters profiles from the 525 undetected
PlanckSZ2 clusters stacked by mass at both 90 and 150 GHz. For each fit, the tables
include the estimated values for the free parameters (θ500c, δT0,a, c0,a), their respective
statistical errors (σθ500c , σδT0,a , σc0,a) and the resulting χ2

ν . All quantities are reported
with precision to 1 decimal place.
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Stacking Group χ2
ν (90 GHz) χ2

ν (150 GHz)
1.1 ≤M ≤ 5.1 1.1 1.7
5.1 ≤M ≤ 9.1 1.1 1.3

9.1 ≤M ≤ 13.1 0.9 1.8
Tot. Avg. 1.0 1.3

Table 4.6: The table contains a report of the χ2
ν obtained by fitting a flat line of the

form f(θ) = 0 to the P radial profiles for the average Planck clusters stacked by mass
at both 90 (inner-column) and 150 GHz (outer-column). Overall, similarly to what
we obtained for the ACT clusters, χ2

ν ∼ 1 for approximately all the stacking groups
considered, with only a few exceptions that do not represent a statistically significant
variation. All quantities are reported with precision to 1 decimal place.

4.3.2 Linear Polarization

Following the same procedure indicated in Sec.4.2, in order to study the potential net

polarized signal from the average PlanckSZ2 clusters, we must compute the radial

profiles of the linear polarization P for each mass bin and subtract the relative mean

noise level. It is useful to recall that since we are still simply examining the ACT

S18dn map, the weights on the P maps are, as derived in Sec.4.2, equal to those

from the thermal maps.

Figure 4.15 shows the resulting profiles of the linear polarization P after mean

subtraction at both 90 and 150 GHz. As for the entire ACT S18dn dataset, also for

these 525 undetected Planck clusters we observe no discernible polarization signal

coming arising from clusters. Quantitatively, this is confirmed by the χ2
ν values

obtained from the fit of all the P profiles with the function f(θ) = 0. As presented

in Table 4.6, all the computed χ2
ν ∼ 1, with maximum value at 1.8 and minimum at

0.9.
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Figure 4.15: The 2 plots in the figure show the radial profiles of the linear polariza-
tion P for the averaged Planck clusters stacked by mass at 90 (top) and 150 (bottom)
GHz. The legend on the top right identifies each mass, associating to them a color
which is kept the same along the top and bottom plot.
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Chapter 5

Conclusions

In this work, we have used data from the ACT S18dn cluster catalog and presented

many aspects of the ACT characterization and scientific results. The main findings of

this thesis are summarized below:

1. In Chapter 3, we computed the abundance redshift distribution of the observed

clusters in the ACT catalog. We then illustrated, through a simplified least-

squares analysis, that given reasonable assumptions on the observational effects

of cluster detection, the calculated distribution generally reconciles with the

cosmological prediction of the ΛCDM model for σ8 ≈ 0.8 .

2. In Chapter 4, we used the unfiltered thermal CMB map from ACT and the

positions of the clusters from the S18dn catalog, to extract the average radial

profiles of clusters, stacked over specific mass and redshift ranges. Given the

inverse-variance weighting of each pixel in the map, we were able to resolve

the cluster thermal profiles at a very high level of precision with error bars at

each radial bin σr ≲ 1µK, despite the map being unfiltered. This allowed us

to test the predictions of the Isothermal β model and the Universal Pressure

Profile (UPP). What we found is that at the current state of observation, the UPP
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performs generally better and provides physically reasonable estimates for the

value of θ500c at each mass and redshift bin.

3. The stacking formalism was then extended to the Q and U polarization maps to

obtain the radial profiles of both Stokes parameters and of the total polarization

P . Given the high precision achieved by these average cluster profiles, we were

able to perform an important test for systematic errors in the map and show

that the Q and U profiles, when averaged over enough clusters, do act like pure

noise with mean value zero. In regards to the total polarization P , we do not

observe a discernible signal coming from the clusters regardless of the average

measure used.

4. Finally, we investigated the 525 clusters from the PlanckSZ2 catalog, in the

overlapping region with the ACT S18dn field, that were not detected by the

ACT experiment. By applying the same stacking formalism used throughout

this work, we were able to verify that these clusters can be resolved in the un-

filtered ACT S18dn equatorial map. We then investigated the resulting thermal

and polarization profiles using the same methodology as for the ACT catalog.

In regard to P maps, we found that there is no net polarization signal, in

agreement with what was obtained for the ACT S18dn dataset. In regard to the

radial profiles, we were able to identify an evident distinction between their

average profiles on the two lower mass bins compared to all the other profiles

presented in this work. The distinctive properties of these clusters, namely

their low mass and large angular scale (very low redshift), perfectly pertain to

the class of objects usually filtered out in the ACT experiment, which provides

a reasonable explanation for their exclusion from the ACT dataset. Overall, if

the preliminary version of the ACT cluster catalog studied in this work is con-

firmed, a similar analysis to what we presented here will be necessary in order
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to accurately characterize the nature of all the exclusions, and constrain more

firmly the completeness level of the survey and any non negligible difference

in the mass calibration between the two experiments.
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Appendix A

Distance measures in an Expanding

Universe

A.1 The Redshift

Light emitted from a distant galaxy which travels towards an observer on Earth is

stretched by this expansion according to:

λ0 = (1 + z)λe, (A.1)

where λe is the wavelength at the time of emission and λ0 is the wavelength we now

observe. The parameter z is the so called cosmological redshift of the source which

results strictly from the expansion of space and can thus be directly expressed in

terms the scale factor a(t), which defines the “size” of the Universe at time t:

a(t) =
1

1 + z
. (A.2)
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It is important to note that there are two other main contributions to the total redshift

of an object which are due to its peculiar velocity vpec with respect to the observer

and the consequent relativist corrections.

A.2 The Hubble parameter

The Hubble parameter H(t) is named after the American astronomer who in 1929

provided the first evidence for an expanding universe studying the relationship be-

tween distance and redshifts of galaxies. H(t) is defined as constant of proportional-

ity between recession speed v and distance d of the universe, it provides a measure

of the relative rate of expansion and can hence be expressed in terms of the scale

factor a according to:

H(t) =
ȧ

a
, (A.3)

H0 represents its present value which in this work I take to be equal to H0 = 70

km s−1 Mpc−1, following the same convention as in [7]. A very useful quantity in

cosmology is the dimensionless Hubble parameter E(z) defined as the ratio of H(t)

to its present value H0. Combining eq.1.4 with the definition of the redshift in terms

of the scale factor, one can derive that:

E(z) =
√

Ω0
m(1 + z)3 +Ω0

Λ, (A.4)

where in the context of the ΛCDM model, we take Ω0
γ ≈ 0, Ω0

m = 0.3 and Ω0
Λ = 0.7.
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A.3 The Angular Diameter Distance

The angular diameter distance DA is defined as the ratio of an object’s physical

transverse size to its angular size. It is usually used to convert angular separations

in telescope images into proper separations at the source [40].

Figure A.1: The figure shows the Angular Diameter Distance DA as a function of
redshift for a ΛCDM cosmology with Ω0

m = 0.3 and Ω0
Λ = 0.7. The dotted line at

z = 1 indicates the approximate characteristic redshift at which DA turns and starts
decreasing so that more distant objects actually appear larger in angular size.

Its function depends on the assumed geometry and in the case of a spatially flat

universe with k = 0, DA is equal to the comoving distance DC times the scale factor

1/(1 + z). DC is defined in turn as the distance between two objects measured along

a path defined at the present cosmological time, in other words is equal to the ratio

of the proper distance to the scale factor a(t) [40]. In terms of the redshift, DA can

be expressed as the integral of the inverse of the dimensionless Hubble parameter
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E(z):

DA(z) =
c

H0

1

1 + z ∫
z

0

dz′

E(z′)
, (A.5)

where E(z) is given by eq.A.4. As shown in the plot above, the DA(z) function

presents a very peculiar feature, which is that it does not increase indefinitely as

z → ∞. In fact, the function turns over at z ∼ 1 such that thereafter more distant

objects actually appear larger in angular size [40].

A.4 The Comoving Volume Element

In a similar fashion to the comoving distance DC , the comoving volume VC is defined

as the proper volume times three factors of the relative scale factor, namely (1 + z)3.

Its differential per unit solid angle per redshift is given by:

dV

dzdΩ
=D2

A

c

H0

(1 + z)2

E(z)
. (A.6)

Here, the angular diameter distance together with two factors of (1 + z) converts a

solid angle Ω into a comoving area [40], which is multiplied by the differential of the

comoving distance, proportional to 1/E(z) as expressed in eq.A.5. The plot of the

comoving volume element, as shown in figure A.2, presents two distinct behaviours

for low and high redshifts, increasing approximately exponentially at first and then

levelling off after reaching a peak at z ∼ 2.
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Figure A.2: The figure shows the Comoving Volume element dV /dΩdz as a function
of redshift for a ΛCDM cosmology with Ω0

m = 0.3 and Ω0
Λ = 0.7. The dotted line at

z = 2 indicates the approximate characteristic redshift at which dV /dΩdz turns and
starts flattening similarly to the angular diameter distance DA. This is explained by
the factor of D2

A in eq.A.6 which dominates at large z.
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Appendix B

Gravitational collapse and Structure

growth

Generally, it’s known that cosmic expansion plays an important role in the formation

of structures on the physical scale of galaxies and above. Specifically, the emerging

picture is that gravitational attraction of initially over-dense regions cause the sur-

rounding matter to deviate from the Hubble flow and collapse onto them, forming

larger and larger collapsed structures. Considering a small positive spherical density

perturbation, the radius of its shell initially expands with the Hubble flow, but then

it slows down, turns over and eventually collapses due to the gravitational pull of the

excess mass it encloses [25]. The time of maximum size is called the turn-around time

tta, while the time of collapse is referred as the virialization time: tvir = tcoll = 2tta.

B.1 The Growth function

The simplest model for cosmological structure growth assumes Birkhoff’s theorem

which states that spherically symmetric gravitational fields in empty space can be

modelled to evolve as independent homogeneous universes with characteristic scale
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factor ap where the subscript p refers to the perturbation [62]. If we take two spheres

containing the same mass, one of background density ρ, and the other with density

ρp, the densities within the spheres are related to their radii by [62]:

ρpa
3
p = ρa

3, δ ≡ ρp/ρ − 1, (B.1)

where to first order in in δ, ap = a(1−δ/3). Following the formalism of eq.1.1 and 1.2,

the cosmological equation for both the spherical perturbation and the background is

then [62]:
1

a

d2a

dt2
= −H2

0 [
1

2
Ω0
ma

−3 −Ω0
Λ] , (B.2)

which is valid for both a and ap and assumes a ΛCDM background model. Using

this equation for both spheres and substituting the relations between a, ap and δ, the

result to first order gives:

δ̈ + 2Hδ̇ −
3

2
Ωm(a)H2δ = 0, (B.3)

where Ωm(a) = Ω0
ma

−3/E2(a) and the dots denotes a time derivative. This equation

can be also derived in the Newtonian limit under the assumption that pressure

gradients are negligible 1. In this limit, one can get eq.B.3, expressed in the same

form as eq.1.5 by combining the Continuity, Euler and Poisson equation that govern

the behaviour of the over-density δ [10].

An important feature of equation B.3 is that it only includes differential terms

in time t which implies that the time evolution is independent of cosmic location x,

such that the corresponding solution to eq.B.3 can be separated into a spatial part

δ(x) and a temporal part D(t), such that δ(t) =D(t)δ(x).

1In other words, assuming Ωm to be the dominant energy element in the universe
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D(t) is the linear growth function and it’s given by [63]:

D(a) =
5Ω0

M

2
E(a)∫

a

0

da′

[a′E (a′)]
3 . (B.4)

In the context of ΛCDM, it is common to use the power series approximation of this

integral by Carroll, Press & Turner [64], which states that:

D(a) ≃
5Ωm(a)a

2
[Ωm(a)4/7 −ΩΛ(a) + (1 +

ΩM(a)

2
)(1 +

ΩΛ(a)

70
)]

−1

. (B.5)

B.2 Critical density for collapse

At any epoch, there is a critical initial density for collapse δc, such that during such

epoch of interest all perturbations that are more dense (δ ≥ δc) have collapsed, while

those that are less dense (δ < δc) have not. δc is defined as the value of the linear

density contrast extrapolated at the time of collapse ( δc = δ(tc)) and depends on the

growth function according to [65]:

δc =D0 lim
H0t→0

[
δ(t)

D(t)
] . (B.6)

In the linear approximation, δc turns out to be only weakly dependent on the cos-

mological model, hence, for ease, it is commonly approximated by its value for the

Einstein-de Sitter (EdS) cosmological model characterized by Ωm = 1 and ΩΛ = 0 [62].

In this linear regime, the evolution of the density perturbations is fully encoded

in the scale factor a(t) of a EdS universe, calculated according to the Friedman
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equations such that:

from eqs. 1.1 and 1.2 for EdS: a(t) = a0 (
8πGρ0

3
)

1
3

t
2
3 ∝ t

2
3

linear regime: δ(t) ∝D(a) ∝ a∝ t
2
3

= δi(
t

ti
)

2
3

, (B.7)

where ti and δi define the initial conditions of the perturbation δ.

Now, in the context of EdS, given a uniform spherical shell of initial radius ri

and density contrast δi, its equation of motion is simply determined by [66]:

r̈ = −
GM

r2
= −

4πG

3r2
ρimr

3
i (1 + δi) , (B.8)

where M = 4π
3 r

3
i ρ

i
m(1 + δi) is the initial total mass of the overdensity 2. The exact

solution of this equation of motion is that of a cycloid parameterized with a variable

θ such that [25]:

r = A(1 − cos θ), t = B(θ − sin θ), (B.9)

where A and B are constants to be determined by the initial conditions for the mass

shell with values bound by the relation A3 = GMB2 3. The maximum radius rta

occurs at the turn around point for θ = π and hence, according to eq.B.9, is equal

to A/2. Following the same argument, the time at turn around tta is also defined at

θ = π and is equal to πB [25].

By integrating eq.B.8, we get the energy conservation equation:

1

2
ṙ2 −

H2
i r

3
i

2r
(1 + δi) = constant ≡ E, (B.10)

2Note the subscripts i on any given quantity x indicate in this notation the initial value of x.

3This relation is derived by expanding the solutions of r and t from eq.B.9 at early times for
θ ⋘ 1, keeping the first two non-zero terms of the power series and then plugging them back in eq.
B.8 [25].
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where I substituted the initial value of the Hubble parameter Hi according to the

definition of the critical density in eq.1.3. The value of E can then be expressed in

terms of the initial parameters δi, ri and Hi by combining eq.B.10 with the Birkhoff’s

theorem mentioned earlier, which states that ṙi
ri
= ȧi
ai
(1 − δi/3) [66].

E = −
5

3

(Hiri)
2

2
δi (B.11)

Given this value, one can solve eq.B.10 at ṙ = 0 and obtain the maximum radius at

the turn-around point rta, this time only in terms of δi and ri [66]:

rta =
3

5
(

1 + δi
δi

) ri. (B.12)

By expanding to linear order in δi and combining all the equations that relate A,

B, rta and tta, it follows that in EdS universe:

rta =
ri

[5
3δi + 1]

; tta =
3π

4

ti

[5
3δi + 1]

3
2

4 (B.13)

Thus, recalling that the collapse time tc = 2tta its corresponding parameter is θc = 2π.

Hence, by plugging the expression of tc from the parametrized solution (eq.B.9) into

the definition of δ(t) from eq.B.7, we can finally derive the famous value of the

critical density for linear collapse δc:

δc = δ(tc) = δi(
tc
ti
)

2
3

(B.14)

= δi(
3

4ti

ti

[5
3δi + 1]

3
2

⋅ 2π)
2
3

(B.15)

=
3

5
(

3π

2
)

2
3

≈ 1.686. (B.16)

4rta is obtained by eq.B.12 for δi ⋘ 1 which implies 3
5
(1 + δi/δi) ≈ 1/[ 5

3
δi + 1]. tta is then derived

using the relation between A and B and the fact that rta = A/2, Hi = 2
3ti

and GM =H2
i r

3
i (1 + δi).
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Appendix C

Additional Figures and Tables

Figure C.1: The figure shows the radial profiles of the errors σ∆T on the observed
thermal decrements for the average clusters stacked by redshift. According to inverse-
variance weighting, σ∆T (θ) is expected to initially decrease sharply as θ increases
and then flatten out at large radii. We observe this behaviour in the picture and
also note that the errors for different ranges of z are roughly the same and around
1 order of magnitude greater than those of the total average. This result confirms
our expectations since the error profiles shown at each redshift range are computed
over an equal amount of clusters Nc according to eq.4.2. On the other hand, the total
average by definition is computed over the entire number of clusters ∼ 5Nc which
should hence lead to lower values for the error at each bin, according to the same
formalism.
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Mass Stacking δT0

[µK]
σδT0
[µK]

θ0

[arcmin]
σθ0

[arcmin]
β σβ c0

[µK]
σc0

[µK]
χ2
ν

Frequency 90 GHz
1.0 ≤M ≤ 3.6 59.9 1.4 1.0 0.1 0.9 0.0 -0.8 0.2 22.7
3.6 ≤M ≤ 6.2 158.3 3.5 0.7 0.1 0.8 0.0 -3.5 0.5 8.2
6.2 ≤M ≤ 8.8 327 8.5 0.8 0.1 0.7 0.0 -18.7 2.5 5.4
8.8 ≤M ≤ 11.4 479.5 7.2 0.9 0.1 0.6 0.0 -37.6 2.9 2.0
11.4 ≤M ≤ 14.1 640.0 9.5 1.5 0.1 0.8 0.0 -24.2 3.2 1.1
Tot. Avg. 72.2 1.6 0.9 0.1 0.9 0.0 -1.2 0.2 29.2

Frequency 150 GHz
1.0 ≤M ≤ 3.6 52.4 1.7 0.9 0.1 1.0 0.1 -0.4 0.1 38.5
3.6 ≤M ≤ 6.2 137.3 3.3 0.8 0.1 0.9 0.0 -2.0 0.4 12
6.2 ≤M ≤ 8.8 295.4 11.7 0.7 0.1 0.7 0.0 -18.6 3.2 15
8.8 ≤M ≤ 11.4 391.6 6.9 0.8 0.1 0.6 0.0 -29.8 2.4 2.0
11.4 ≤M ≤ 14.1 533.4 11.8 1.53 0.12 0.8 0.0 -20.9 3.6 1.9
Tot. Avg. 62.7 1.8 0.8 0.1 0.9 0.0 -0.7 0.2 47.4

Redshift Stacking δT0

[µK]
σδT0
[µK]

θ0

[arcmin]
σθ0

[arcmin]
β σβ c0

[µK]
σc0

[µK]
χ2
ν

Frequency 90 GHz
0.0 ≤ z ≤ 0.3 98.5 1.8 1.2 0.1 0.7 - -6.6 0.7 8.1
0.3 ≤ z ≤ 0.4 68.1 1.5 1.7 0.2 1.2 0.1 -0.5 0.2 11.7
0.4 ≤ z ≤ 0.6 71.5 2.1 0.6 0.1 0.8 - -1.4 0.2 4.3
0.6 ≤ z ≤ 0.7 61.1 1.5 1.3 0.2 1.4 0.2 -0.1 0.1 5.3
0.7 ≤ z ≤ 1.9 68.0 4.3 0.7 0.2 1.1 0.1 -0.4 0.1 13.1
Tot. Avg. 72.2 1.6 0.9 0.1 0.9 - -1.2 0.2 29.2

Frequency 150 GHz
0.0 ≤ z ≤ 0.3 83.3 1.9 1.0 0.1 0.7 - -6.0 0.7 12
0.3 ≤ z ≤ 0.4 58.2 1.9 1.5 0.2 1.3 0.1 -0.3 0.2 21.2
0.4 ≤ z ≤ 0.6 58.9 1.7 0.8 0.1 1.0 - -0.4 0.1 6.4
0.6 ≤ z ≤ 0.7 55.3 3.0 1.5 0.5 2.0 0.7 -0.4 0.1 25.6
0.7 ≤ z ≤ 1.9 63.0 4.5 0.7 0.2 1.2 0.2 -0.4 0.1 22.0
Tot. Avg. 62.7 1.8 0.8 0.1 0.9 - -0.7 0.2 47.4

Table C.1: The two tables contain a report of the best fits of the Isothermal β model as
expressed in eq.4.5, to the average clusters profiles stacked by mass (top) and redshift
(bottom) at both 90 and 150 GHz. For each fit, the tables include the estimated values
for the free parameters (δT0,β, θc, β, c0,β), their respective statistical errors (σδT0,β ,
σθc , σβ, σc0,β ) and the resulting χ2

ν . All quantities are reported with precision to 1
decimal place. The dashes − follow the same convention established in table 4.1. The
highly variance on the values of β and the angular core radius θc, combined with
their extremely low statistical errors, is physically unacceptable and it’s thus evidence
of the impracticality of performing fits with the β-model without first fixing β to a
reasonable value.
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Stacking Group χ2
ν for U χ2

ν for Q
Frequency 90 GHz

0.0 ≤ z ≤ 0.3 1.4 1.0
0.3 ≤ z ≤ 0.4 2.3 2.2
0.4 ≤ z ≤ 0.6 2.1 1.9
0.6 ≤ z ≤ 0.7 1.1 1.7
0.7 ≤ z ≤ 1.9 1.8 1.0

Tot. Avg. 1.6 1.3

Frequency 150 GHz
0.0 ≤ z ≤ 0.3 2.8 2.0
0.3 ≤ z ≤ 0.4 4.2 1.2
0.4 ≤ z ≤ 0.6 3.1 3.3
0.6 ≤ z ≤ 0.7 1.8 1.9
0.7 ≤ z ≤ 1.9 2.0 1.6

Tot. Avg. 1.7 1.2

Table C.2: The table contains a report of the χ2
ν obtained by fitting a flat line of

the form f(θ) = 0 to the radial profiles of the Stokes parameters Q and U for the
clusters groups stacked by redshift at both 90 and 150 GHz. Overall, χ2

ν ∼ 1 for most
of the stacking groups considered, with exceptions that all present values of χ2

ν ≲ 4,
which are not to be considered as a statistically significant variation. All quantities
are reported with precision to 1 decimal place.
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